Optimal structural and geotechnical parameters for seismic performance improvement of integral bridges

2018-08-03
In this paper, practical techniques are introduced for detailed modelling of soil-pile and soil-abutment interaction effects for integral bridges (IBs). Furthermore, a parametric study is conducted to determine appropriate structural configurations and geotechnical properties to enhance the seismic performance of IBs. For this purpose, numerous nonlinear structural models of a two-span IB including dynamic soil-bridge interaction effects are built. Nonlinear time history analyses (NTHA) of the IB models are then conducted using a set of ground motions with various intensities. In the analyses, the effect of various structural and geotechnical properties such as foundation soil stiffness, backfill compaction level, pile size and orientation, abutment height and thickness are considered. The results of NTHA are then used to assess the effects of these properties on the seismic performance of IBs. The parametric study revealed that softer foundation soils provide an isolation effect enhancing the seismic performance of IBs. Furthermore, IBs built with shorter and thinner abutments as well as large steel H-piles oriented to bend about their strong axis exhibit better seismic performance.
10th International Conference on Short and Medium Span Bridges Quebec City, (July 31 – August 3, 2018)

Suggestions

Parametric study on the effect of structural and geotechnical properties on the seismic performance of integral bridges
Erhan, Semih; Dicleli, Murat (Springer Science and Business Media LLC, 2017-10-01)
In this paper practical techniques are introduced for detailed modeling of soil-pile and soil-abutment interaction effects for integral bridges (IBs). Furthermore, a parametric study is conducted to determine appropriate structural configurations and geotechnical properties to enhance the seismic performance of IBs. For this purpose, numerous nonlinear structural models of a two-span IB including dynamic soil-bridge interaction effects are built. Nonlinear time history analyses (NTHA) of the IB models are t...
Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework
Uz-Logoglu, Eda; Salor, Ozgul; Ermiş, Muammer (2019-11-01)
In this paper, a method based on the multiple synchronous reference frame analysis is recommended and implemented to detect time-varying harmonics and interharmonics of rapidly fluctuating asymmetrical industrial loads. The experimental work has been carried out on a typical three-phase alternating current arc furnace installation. In the recommended method, the reference frame is rotated in both directions at speeds corresponding to the positive and negative sequences of all harmonics and all interharmonic...
Computational modeling of passive myocardium
Göktepe, Serdar; Wong, Jonathan; Kuhl, Ellen (Wiley, 2011-01-01)
This work deals with the computational modeling of passive myocardial tissue within the framework ofmixed, non-linear finite element methods. We consider a recently proposed, convex, anisotropic hyperelastic model that accounts for the locally orthotropic micro-structure of cardiac muscle. A coordinate-free representation of anisotropy is incorporated through physically relevant invariants of the Cauchy-Green deformation tensors and structural tensors of the corresponding material symmetry group. This model...
Real-Time Detection of Interharmonics and Harmonics of AC Electric Arc Furnaces on GPU Framework
Uz-Logoglu, Eda; Salor, Ozgul; Ermiş, Muammer (2017-10-05)
In this paper, a method based on the multiple synchronous reference frame (MSRF) analysis is recommended and implemented to detect time-varying harmonics and interharmonics of rapidly fluctuating asymmetrical industrial loads. The experimental work has been carried out on a typical three-phase alternating current arc furnace (AC EAF) installation. In the recommended method, the reference frame is rotated in both directions at speeds corresponding to the positive and negative sequences of all harmonics and a...
Nonlinear Structural Coupling: Experimental Application
Kalaycioglu, Taner; Özgüven, Hasan Nevzat (2014-02-06)
In this work, the nonlinear structural modification/coupling technique proposed recently by the authors is applied to a test system in order to study the applicability of the method to real structures. The technique is based on calculating the frequency response functions of a modified system from those of the original system and the dynamic stiffness matrix of the nonlinear modifying part. The modification can also be in the form of coupling a nonlinear system to the original system. The test system used i...
Citation Formats
M. Dicleli, “Optimal structural and geotechnical parameters for seismic performance improvement of integral bridges,” presented at the 10th International Conference on Short and Medium Span Bridges Quebec City, (July 31 – August 3, 2018), Quebec, Canada, 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/78150.