Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Drag Analysis of a Supersonic Fighter Aircraft
Date
2016-07-15
Author
Akgün, Osman
Golcuk, Ali İhsan
Kurtuluş, Dilek Funda
Kaynak, Ünver
Metadata
Show full item record
Item Usage Stats
304
views
0
downloads
Cite This
For aircraft design, drag optimization is very important for having better flight performance and less fuel consumption. In this study, drag effects of fuselage, wing and tail section are separately analyzed using a generic F-16 fighter aircraft model in ANSYS Fluent CFD tool with polyhedral mesh. Pressure drag and viscous drag effects are shown on different section of the aircraft as fuselage, wing, vertical tail and horizontal tail. Drag values are presented on subsonic, transonic and supersonic flights.
Subject Keywords
CFD
,
viscous drag
,
Induced drag
,
Wave drag
,
F-16
URI
https://hdl.handle.net/11511/79292
https://iccfd9.itu.edu.tr/assets/pdf/papers/ICCFD9-2016-239.pdf
Conference Name
Ninth International Conference on Computational Fluid Dynamics (ICCFD9)
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Winglet design and analysis for low-altitude solar-powered UAV
Gölcük, Ali Ihsan; Kurtuluş, Dilek Funda (2017-01-01)
One of the most important factors affecting the aerodynamic performance of the aircraft is lift-induced drag caused by wingtip vortices. This study describes the winglet design and analysis for solar-powered unmanned air vehicle (UAV). The motivation of this study is designing elliptical winglet to explore efficient shapes using multiple winglet parameters such as cant angle, sweep angle, taper ratio, toe angle and twist angle. The aim was to investigate the performance of parameters that constitute the win...
Vortex flow aerodynamics behind a symmetric airfoil at low angles of attack and Reynolds numbers
Kurtuluş, Dilek Funda (2021-11-01)
The low Reynolds number aerodynamics is important to investigate for micro air vehicle applications. The current paper covers numerical simulations to present the downstream development of the wake patterns and detailed analysis of the vortices generated at the downstream of NACA 0012 airfoil around the critical angle of attack where the instantaneous vortex patterns are oscillatory and differ from the mean vortex pattern for low Reynolds numbers ranging from 1000 to 4000. The instantaneous and mean aerodyn...
Structural optimization of a composite wing
Sökmen, Özlem; Akgün, Mehmet A.; Department of Aerospace Engineering (2006)
In this study, the structural optimization of a cruise missile wing is accomplished for the aerodynamic loads for four different flight conditions. The flight conditions correspond to the corner points of the V-n diagram. The structural analysis and optimization is performed using the ANSYS finite element program. In order to construct the flight envelope and to find the pressure distribution in each flight condition, FASTRAN Computational Fluid Dynamics program is used. The structural optimization is perfo...
Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight
Perçin, Mustafa; de Croon, G. C. H. E.; Remes, B. (IOP Publishing, 2016-06-01)
The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum condi...
Winglet design and analysis for low altitude solar powered UAV
Gölcük, Ali İhsan; Kurtuluş, Dilek Funda; Department of Aerospace Engineering (2016)
To improve the aerodynamic performance of aircraft, comprehensive studies have been carried out in different areas such as wing optimization, tail types and fuselage shape, etc… One of the most important factors affecting the aerodynamic performance of the aircraft is lift induced drag caused by wingtip vortices. Winglet is a device referred as a small, vertical and angled extension attached at aircraft wingtip. It is used to minimize strength of vortices and reduce the lift induced drag. Various types of w...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Akgün, A. İ. Golcuk, D. F. Kurtuluş, and Ü. Kaynak, “Drag Analysis of a Supersonic Fighter Aircraft,” presented at the Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, TURKEY, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/79292.