Poli(2-isopropil-2-oksazolin) ve Tanik Asit İçeren Katman-katman Filmlerden Doksorubisin’in Çevre Koşullarına Duyarlı Salımı

2017-09-14
Haktanıyan, Meltem
Atilla, Suleyman
Çağlı, Eda
Erel Göktepe, İrem
Stimuli responsive polymers are promising materials for biomedical applications due to change in their properties in response to changes in environmental conditions. Among all the stimuli, pH and temperature are the most extensively studied ones in biomedical applications. pH is an internal trigger. pH changes at different regions of the body. Besides, pH is more acidic than the pH at tumor tissues or at an infected site in the body. Temperature can behave as both an internal and an external trigger. Increase in temperature during a disease state is an example of an internal trigger. Applying heat externally to increase the temperature of a specific part in the body during hyperthermia treatment is an example of an external trigger. Temperature responsive polymers change their solubility with changing temperature. Thermoresponsive polymers are classified into two: i) polymers exhibiting lower critical solution temperature (LCST) in aqueous solution and ii) polymers exhibiting upper critical solution temperature (UCST) in aqueous solution. If the polymer solution shows phase separation with increasing temperature, this polymer solution has lower critical solution temperature (LCST). If the polymer solution shows phase separation upon cooling, the polymer solution has an upper critical solution temperature (UCST). Recently, poly(2-alkly-2-oxazoline)s which show LCST-type behavior in aqueous solution have been of interest as an alternative to poly(N-isopropylacrylamide) (PNIPAM), a commonly used polymer exhibiting LCST-type behavior in aqueous solution in biomedical applications. Layer-by-layer (LbL) self-assembly technique is an efficient and a practical method for preparation of ultra-thin multilayer films. By using stimuli responsive polymers as building blocks during multilayer assembly, the resulting LbL films can be made responsive to changes in environmental conditions. This feature specifically makes LbL films promising polymer platforms for controlled release applications from surfaces. The study presented in this thesis reports on the fabrication of anti-cancer drug, Doxorubicin (DOX) containing multilayers of poly(2-isopropyl-2-oxazoline) (PIPOX) and Tannic acid (TA) and release of DOX from the multilayers at moderately acidic conditions. Moreover, the effect of temperature on the pH-induced release of DOX from the surface and correlated the results with the LCST behavior of PIPOX were investigated. First, PIPOX was synthesized via cationic ring opening polymerization. Prior to film construction, water soluble complexes of TA and DOX (TA-DOX) were prepared. PIPOX and TA-DOX were deposited on the surface using LbL technique through hydrogen bonding interactions at pH 6.5. Minimal amount of DOX was released at physiological pH. In contrast, pH-induced release of DOX was observed at moderately acidic conditions due to protonation of TA as the acidity increased and loss of electrostatic interactions among TA and DOX. Moreover, it is observed that raising the temperature from 25 °C to 37.5 °C increased the amount of DOX released from the surface due to conformational changes within the multilayers correlated with the lower critical solution temperature (LCST) behavior of PIPOX. This study is the first one reporting the pH- and/or temperature-induced release of DOX from poly(2-alkyl-2-oxazoline) based hydrogen-bonded multilayers. Considering the temperature-responsive behavior of PIPOX and important biological properties of PIPOX and TA, combined with the acidic nature of tumor tissues, these multilayers which release DOX at moderately acidic conditions, can be promising drug carriers for controlled release of DOX from surfaces.
29.Ulusal Kimya Kongresi, 10 - 14 September 2017

Suggestions

Stimuli-responsive release of doxorubicin from layer-by-layer films of Poly(2-isopropyl-2-oxazoline) and tannic acid
Haktanıyan, Meltem; Erel Göktepe, İrem; Department of Chemistry (2016)
Stimuli responsive polymers are promising materials for biomedical applications due to change in their properties in response to changes in environmental conditions. Among all the stimuli, pH and temperature are the most extensively studied ones in biomedical applications. pH is an internal trigger. pH changes at different regions of the body. Besides, pH is more acidic than the pH at tumor tissues or at an infected site in the body. Temperature can behave as both an internal and an external trigger. Increa...
Polycarbonate based zeolite 4a filled mixed matrix membranes: preparation, characterization and gas separation performances
Şen, Değer; Yılmaz, Levent; Department of Chemical Engineering (2008)
Developing new membrane morphologies and modifying the existing membrane materials are required to obtain membranes with improved gas separation performances. The incorporation of zeolites and low molecular-weight additives (LMWA) into polymers are investigated as alternatives to modify the permselective properties of polymer membranes. In this study, these two alternatives were applied together to improve the separation performance of a polymeric membrane. The polycarbonate (PC) chain characteristics was a...
Synthesis and characterization of copolymers of diisocyanates and dialcohol
Keskin, Selda; Usanmaz, Ali; Department of Polymer Science and Technology (2008)
This study was aimed to synthesize low molecular weight hydroxyl terminated polyurethane acrylate polymers that can be used in biomedical applications. Acrylate end capping via inter-esterification reaction was successfully achieved with the methacryloyl chloride addition to the hydroxyl ends of the polyurethane at low temperatures. Isocyanate terminated polyurethane acrylates were also synthesized for the sake of comparison. TDI, HDI and MDI were used as diisocyanates for urethane synthesis and they were e...
Optical and structural characterization of mixed halide perovskite thin films by thermal co-evaporation
Yılmaz, Onur; Turan, Raşit; Yerci, Selçuk; Department of Physics (2016)
Cost-effective, easy-to-produce, optically and electrically configurable properties of perovskite allow researchers to perform a profound investigation to better understand its physical and chemical nature. Additionally, band gap tunability by introducing bromide (Br) to replace iodine (I) also makes perovskite a suitable material for tandem solar cells. However, to fully benefit from perovskite cells, hysteresis in current-voltage curve, poor stability and relatively low fill factor in large area devices n...
Prediction of multiphase flow properties from nuclear magnetic resonance imaging
Karaman, Türker; Akın, Serhat; Department of Petroleum and Natural Gas Engineering (2009)
In this study a hybrid Pore Network (PN) model that simulates two-phase (water-oil) drainage and imbibition mechanisms is developed. The developed model produces Nuclear Magnetic Resonance (NMR) T2 relaxation times using correlations available in the literature. The developed PN was calibrated using experimental relative permeability data obtained for Berea Sandstone, Kuzey Marmara Limestone, Yeniköy Dolostone and Dolomitic Limestone core plugs. Pore network body and throat parameters were obtained from ser...
Citation Formats
M. Haktanıyan, S. Atilla, E. Çağlı, and İ. Erel Göktepe, “Poli(2-isopropil-2-oksazolin) ve Tanik Asit İçeren Katman-katman Filmlerden Doksorubisin’in Çevre Koşullarına Duyarlı Salımı,” presented at the 29.Ulusal Kimya Kongresi, 10 - 14 September 2017, Ankara, Türkiye, 2017, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/79769.