Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computational image formation with photon sieves for milli arcsecond solar imaging
Date
2016-07-30
Author
Öktem, Sevinç Figen
Davila, Joseph
Metadata
Show full item record
Item Usage Stats
134
views
0
downloads
Cite This
A photon sieve is a modification of a Fresnel zone plate in which open zones are replaced by a large number of circular holes. This diffractive imaging element is specially suited to observations at UV and x-ray wavelengths where refractive lenses are not available due to strong absorption of materials, and reflective mirrors are difficult to manufacture with sufficient surface figure accuracy to achieve diffraction-limited resolution. On the other hand, photon sieves enable diffraction-limited imaging with much more relaxed tolerances than conventional imaging technology. In this presentation, we present the capabilities of an instrument concept that is based on computational image formation with photon sieves. The instrument enables high-resolution spectral imaging by distributing the imaging task between a photon sieve system and a computational method. A photon sieve coupled with a moving detector provides measurements from multiple planes. Then computational image formation, which involves deconvolution, is performed in a Bayesian estimation framework to reconstruct the multi-spectral images from these measurements. In addition to diffraction-limited high spatial resolution enabled by photon sieves, this instrument can also achieve higher spectral resolution than the conventional spectral imagers, since the technique offers the possibility of separating nearby spectral components that would not otherwise be possible using wavelength filters. Here, the promising capabilities and the imaging performance are shown for imaging the solar corona at EUV wavelengths. The effectiveness of various potential observing scenarios, the effects of interfering emission lines, and the appropriate form of the cost function for image deconvolution are examined.
URI
https://hdl.handle.net/11511/81805
Conference Name
41st COSPAR Scientific Assembly (cancelled), 30 Temmuz - 07 Ağustos 2016
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
High-Resolution Solar Imaging With Photon Sieves
Öktem, Sevinç Figen; Davila, Joseph M (2014-12-15)
A photon sieve is a modification of a Fresnel zone plate in which open zones are replaced by a large number of circular holes. This lightweight optical device offers a superior image forming capability compared with the Fresnel zone plate, and is specially suited to observations at UV and x-ray wavelengths where refractive lenses are not available due to strong absorption of materials, and reflective mirrors are difficult to manufacture to achieve near diffraction-limited resolution. At these shorter wavele...
Exploring the Photon Sieve: Mathematical Framework and Experimental Categorization
Oneill, John; Davila, Joseph M; Öktem, Sevinç Figen; Daw, Adrian (2014-12-15)
The photon sieve is a diffractive optical element similar to a Fresnel zone plate, however instead of alternating rings of opaque and transmissive material the sieve is made up of many holes arranged in concentric circles. A sieve provides diffraction-limited resolution where traditional reflective and refractive optics are unable to, such as in the extreme ultraviolet. We present here recent results of testing the photon sieve's properties and comparing them to theory. Such results include multiple wavelen...
Numerical Modeling of Electromagnetic Scattering from Periodic Structures by Transformation Electromagnetics
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2016-09-22)
The transformation electromagnetics is applied to the modeling of electromagnetic scattering from periodic structures in conjunction with the finite element method with periodic boundary conditions. In a unit cell of periodic structure, a uniform mesh is used over a flat surface and the arbitrary periodic surface is modeled by a coordinate transformation. The major advantage of this approach is that arbitrary geometries can be handled by using a single and simple mesh. Therefore, repeated computations (such...
Thermal convection in the presence of a vertical magnetic field
Guray, E.; Tarman, H. I. (Springer Science and Business Media LLC, 2007-11-01)
The interaction between thermal convection and an external uniform magnetic field in the vertical is numerically simulated within a computational domain of a horizontally periodic convective box between upper and lower rigid plates. The numerical technique is based on a spectral element method developed earlier to simulate natural thermal convection. In this work, it is extended to a magnetoconvection problem. Its main features are the use of rescaled Legendre-Lagrangian polynomial interpolants in expanding...
Numerical simulations of thermal convection under the influence of an inclined magnetic field by using solenoidal bases
Yarimpabuc, D.; Tarman, Işık Hakan; Yildirim, C. (2014-11-01)
The effect of an inclined homogeneous magnetic field on thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal (divergence-free) basis functions satisfying the boundary conditions for both the velocity and the induced magnetic field. Thus, the divergence-free conditions for both velocity and magnetic field are satisfied exactly. The expansion ba...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. F. Öktem and J. Davila, “Computational image formation with photon sieves for milli arcsecond solar imaging,” presented at the 41st COSPAR Scientific Assembly (cancelled), 30 Temmuz - 07 Ağustos 2016, 2016, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/81805.