Development of Graphene Oxide based Aerogels

Doğan, Öznur
Bat, Erhan


Development of graphene oxide based aerogels
Doğan, Öznur; Bat, Erhan; Department of Chemical Engineering (2017)
Owing to their large surface area, high hydrophobicity and porous structure, graphene oxide based aerogels have been proposed as feasible and economic solutions for the increasing water pollution caused by crude oils, petroleum products and toxic organic solvents. In this study, graphene oxide based aerogels were prepared via two different routes. In the first route, random copolymers of glycidyl methacrylate and styrene were used as crosslinkers in the aerogel. In the second route, 1,3-diaminopropane was u...
Development of Graphene Oxide Polymer Based Aerogels
Doğan, Öznur; Bat, Erhan (2016-07-17)
Development of piezoelectric ceramics for ultrasonic motor applications
Kalem, Volkan; Timuçin, Muharrem; Department of Metallurgical and Materials Engineering (2011)
This study has been carried out to develop and manufacture piezoelectric ceramic materials which are utilized for ultrasonic motor (USM) applications. For this purpose, the effect of compositional modifications on the dielectric and piezoelectric properties of lead zirconate titanate (PZT) based ceramics was investigated. PZT based powders were produced using the mixed oxide method. The base composition was selected as Pb(Zr0.54Ti0.46)O3. The samples in the proximity of morphotrophic phase boundary were dop...
Development of organic-inorganic composite membranes for fuel cell applications
Erdener, Hülya; Baç, Nurcan; Department of Chemical Engineering (2007)
Hydrogen is considered to be the most promising energy carrier of the 21st century due to its high energy density and sustainability. The chemical energy of hydrogen can be directly converted into electricity by means of electrochemical devices called fuel cells. Proton exchange membrane fuel cells (PEMFC) are the most preferred type of fuel cells due to their low operating temperatures enabling fast and easy start-ups and quick responses to load changes. One of the most important components of a PEMFC is t...
Development of high strength lightweight high entropy alloys (LWHEAs)
Polat, Gökhan.; Kalay, Yunus Eren; Department of Metallurgical and Materials Engineering (2020)
In this thesis, the HEA formation ability of low-density elements was carefully studied in detail. In this respect, lightweight or relatively lightweight elements such as B, Mg, Al, Si, Ti, V, Cr, Mn and combinations of these elements with high-density elements such as Cu, Ni were used to produce novel lightweight high entropy alloys (LWHEAs) relative to the density of steel parts (~7.86 g/cm3). This thesis involves the design, production, and characterization of LWHEAs. The design and selection of the prop...
Citation Formats
Ö. Doğan and E. Bat, “Development of Graphene Oxide based Aerogels,” 2016, Accessed: 00, 2021. [Online]. Available: