Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of a Material Response Solver for Charring Ablative Materials
Date
2019-06-14
Author
Coşkun, Volkan
Sert, Cüneyt
Acar, Bülent
Metadata
Show full item record
Item Usage Stats
191
views
0
downloads
Cite This
Development of a solver in order to estimate the material response of charring ablative materials which are utilized as thermal protection systems in space vehicles is presented. First, the governing equations for modeling transient thermal response of charring ablative materials and the adopted numerical solution schemes are reviewed. The governing equations include energy balance, pyrolysis kinetics and mass balance. Solution of the governing equations in conjunction with appropriate boundary conditions gives the thermal response of the ablative material. Equations are discretized using vertex-centered finite volume method and solved in a loosely coupled sequential way. Verification studies showed that the results of the developed code are in good agreement with those in the references.
URI
https://hdl.handle.net/11511/83602
Collections
Unverified, Article
Suggestions
OpenMETU
Core
Development of a shell finite element for large deformation analysis of laminated composites
Yıldız, Tuba; Darendeliler, Haluk; Department of Mechanical Engineering (2008)
The objective of the present work is to investigate the behavior of laminated fiber -reinforced polymer matrix composite shell structures under bending load with the help of a modified finite element computer code which was previously developed for the analysis of pseudo-layered single material shells. The laminates are assumed to be orthotropic and the formulation is adapted to first order shear deformation theory. The aim is to determine the large deformation characteristics numerically, and to predict th...
Development of a computer program for the analysis of fatigue crack growth
Dalgıç, Ali Murtaza; Bilir, Ömer Gündüz; Kadıoğlu, Suat; Department of Mechanical Engineering (2002)
In this study, a computer program is developed for fatigue crack propagation analysis of metal alloys and random fiber composites. The developed program takes the fatigue crack propagation experiment data in the form of crack length vs. number of cycles from the user. The user also, selects the crack geometry and defines loading conditions of the test specimen. Developed program analyze the experimental data and evaluates crack growth rate and stress intensity range. For the calculated or ready crack growth...
Design of an irradiation test facility for space applications
Kızılören, Dilek; Demirköz, Melahat Bilge; Department of Physics (2014)
Space radiation damages electronic components of spacecraft. Damages are due to cosmic rays which consist of protons, photons, electrons, and heavy nuclei. Function- ality and performance of the electronic components in flight depend on the orbital pa- rameters of spacecrafts and exposure time. The space radiation causes three types of effects and these are categorized as Single Event Effects (SEEs), Total Ionizing Dose (TID) Effects and Non-Ionizing Dose Displacement Damage Effects. Radiation hard- ness ass...
Assessment of a frequency-domain linearised Euler solver for turbofan aft radiation predictions and comparison with measurements
Özyörük, Yusuf (2010-03-31)
This paper presents a frequency-domain computational aeroacoustics tool for predicting aft noise radiation through turbofan ducts and jets and its application to two realistic engine exhaust configurations which have been experimentally tested. The tool is based on the discretised axisymmetric form of the linearised Euler equations in conjunction with perfectly matched layer equations at the inlet and far-field boundaries using high-order finite differences. The resultant linear system of equations is inver...
Conceptual design of a hybrid (turbofan/solar) powered HALE UAV
Mermer, Erdinç; Özgen, Serkan; Department of Aerospace Engineering (2016)
The aim of the thesis is to design a HALE UAV using both turbofan engine and solar energy in order to obtain 24 hours endurance with 550 lb payload capacity and 30000 ft service ceiling. During daytime, required power is obtained from solar panels. However, excess solar energy is used for charging the lithium-ion battery. It is assumed that turbofan engine is used only for climbing to the required altitude. During loiter, only solar energy and battery power are used. The design methodology consists of two m...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
V. Coşkun, C. Sert, and B. Acar, “Development of a Material Response Solver for Charring Ablative Materials,” 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/83602.