Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical Study Of Nonlinear Oscillations And Pattern Formation İn Glow Discharge Semiconductor System
Date
2014-02-01
Author
Rafatov, İsmail
Çakır, Serhat
Metadata
Show full item record
Item Usage Stats
183
views
0
downloads
Cite This
We studied asystem consisted of a planar glow discharge layer with short length in the forward direction and wide lateral dimensions, which iscoupled to a semiconductor layer with low conductivity. The whole structure is sandwiched between two planar electrodes, to which a dc voltage is applied. Experiments show that such a system can create different homogeneous stationary and homogeneous oscillating modes, patterns with spatial and spatiotemporal structures. We developed and applied full three-dimensional fluid numerical code to study temporal and spatial pattern formation in this system.
URI
https://hdl.handle.net/11511/84705
Conference Name
International Conference on Plasma Physics and Controlled fusion (10 - 14 Şubat 2014)
Collections
Department of Physics, Conference / Seminar
Suggestions
OpenMETU
Core
Numerical modelling of spatio-temporal patterns in a DC-driven gas discharge-semiconductor system
Özden, Gözde; Rafatov, İsmail; Karasözen, Bülent; Department of Scientific Computing (2015)
In this thesis, numerical modelling of temporal and spatial pattern formation in the planar layered system, consisted of a DC driven planar gas discharge layer, coupled to high ohmic semiconductor layer, is carried out in 1D and 2D Cartesian geometry. Numerical model includes continuity equations for ions and electrons, the Poisson equation for the electric field, the energy balance equation for the background gas. The conditions correspond to a transition from the Townsend regime to the glow discharge. Cal...
Investigation of nonlinear oscillations in the gas discharge-semiconductor system: effect of different fluid modelling approaches
Yeşil, Cihan; Rafatov, İsmail; Department of Physics (2018)
The work deals with the study of nonlinear oscillations in a system, consisted of planar glow discharge layer, coupled to a high-ohmic semiconductor layer. The whole system is sandwiched between two planar electrodes, to which the DC voltage is applied. The discharge models are developed in Comsol Multiphysics (v5.2), and based on fluid description of plasma, with drift-diffusion approximation for charged particle fluxes. Numerical tests are carried out for the discharge in Nitrogen, with GaAs semiconductor la...
Numerical evidence of spontaneous division of dissipative solitons in a planar gas discharge-semiconductor system
Rafatov, İsmail (AIP Publishing, 2019-09-01)
This work deals with the formation of patterns of spatially localized solitary objects in a planar semiconductor gas-discharge system with a high Ohmic electrode. These objects, known as dissipative solitons, are generated in this system in the form of self-organized current filaments, which develop from the homogeneous stationary state by the Turing bifurcation. The numerical model reveals, for the first time, evidence of spontaneous division of the current filaments in this system, similar to that observe...
Numerical and Experimental Investigation of Newtonian Flow around a Confined Square Cylinder
Tezel, Guler Bengusu; YAPICI, Kerim; Uludağ, Yusuf (Periodica Polytechnica Budapest University of Technology and Economics, 2019-01-01)
The confined flow of a Newtonian fluid around a square cylinder mounted in a rectangular channel was investigated both numerically and experimentally. Ratio between the pipe and channel height, the blockage ratio, is kept constant at 1/4. The flow variables including streamlines, vorticity and drag coefficients were calculated at 0 <= Re <= 50 using finite volume method. The velocity terms in the momentum equations are approximated by a higher-order and bounded scheme of Convergent and Universally Bounded I...
Numerical analysis of formation of hexagonal and band structures in the gas discharge - semiconductor system
Rafatov, İsmail (2015-09-01)
The spontaneous formation of regular hexagonal and band structures in the current distribution of the gas discharge – semiconductor system is studied. The system consists of a planar glow discharge layer with short length in the forward direction and wide lateral dimensions, which is coupled to a planar semiconductor layer with low conductivity. The whole structure is sandwiched between two plane electrodes to which a dc voltage is applied. The choice of input parameters is guided by the experimental study ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Rafatov and S. Çakır, “Numerical Study Of Nonlinear Oscillations And Pattern Formation İn Glow Discharge Semiconductor System,” presented at the International Conference on Plasma Physics and Controlled fusion (10 - 14 Şubat 2014), Zvenigorod, Rusya, 2014, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/84705.