Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical Improvement of Terahertz Time-Domain Spectroscopic Measurements
Date
2011-01-01
Author
Köseoğlu, Devrim
Berberoğlu, Halil
Altan, Hakan
Metadata
Show full item record
Item Usage Stats
64
views
0
downloads
Cite This
URI
http://link.springer.com/book/10.1007%2F978-94-007-0769-6
https://hdl.handle.net/11511/85664
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
Numerical Improvement of Terahertz Time-Domain Spectroscopic Measurements
Koseoglu, D.; Berberoglu, H.; Altan, Hakan (2009-11-06)
We have developed an algorithm to efficiently eliminate unwanted reflections typically observed in the data obtained by Terahertz time-domain spectroscopic (THz-TDS) methods. The algorithm works by eliminating the reflections from the boundaries. The numerical improvement of the data allows better analysis of the critical parameters obtained by THz-TDS systems.
Numerical investigation of free surface and pipe flow problems by smoothed particle hydrodynamics
Dinçer, Ali Ersin; Bozkuş, Zafer; Department of Civil Engineering (2017)
In the present study, a two-dimensional (2D) computer code for free surface and pipe flows is developed by using Smoothed Particle Hydrodynamics (SPH) approach. For free surface flow problem, idealized dam break problems are investigated numerically. The results of three recently published experimental studies are used to validate the numerical solutions. In addition to mesh-free particle method, SPH with a novel boundary treatment model proposed in the present study, mesh-based methods with turbulence and ...
Numerical analysis of long wavelength infrared HgCdTe photodiodes
Kocer, H.; Arslan, Y.; Beşikci, Cengiz (2012-01-01)
We present a detailed investigation of the performance limiting factors of long and very long wavelength infrared (LWIR and VLWIR) p on n Hg1-xCdxTe detectors through numerical simulations at 77 K incorporating all considerable generation-recombination (G-R) mechanisms including trap assisted tunneling (TAT), Shockley-Read-Hall (SRH), Auger and radiative processes. The results identify the relative strengths of the dark current generation mechanisms by numerically extracting the contribution of each G-R mec...
Numerical simulation of radiating flows
Karaismail, Ertan; Selçuk, Nevin; Department of Chemical Engineering (2005)
Predictive accuracy of the previously developed coupled code for the solution of the time-dependent Navier-Stokes equations in conjunction with the radiative transfer equation was first assessed by applying it to the prediction of thermally radiating, hydrodynamically developed laminar pipe flow for which the numerical solution had been reported in the literature. The effect of radiation on flow and temperature fields was demonstrated for different values of conduction to radiation ratio. It was found that ...
Numerical simulation and experimental study of gun interior ballistics
Yazıcı, Zafer Tümer; Vural, Hüseyin; Department of Mechanical Engineering (2001)
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Köseoğlu, H. Berberoğlu, and H. Altan, “Numerical Improvement of Terahertz Time-Domain Spectroscopic Measurements,” 2011, Accessed: 00, 2021. [Online]. Available: http://link.springer.com/book/10.1007%2F978-94-007-0769-6.