A Bayesian approach to inclusion and performance analysis of using extra information in bioelectric inverse problems

2003-12-16
Due to attenuation and spatial smoothing that occurs in the conducting media, the bioelectric inverse problem of estimating sources from remote measurements is ill-posed and solution requires regularization. Recent studies showed that employing Bayesian methods could help increase accuracy. The basic limitations are the availability of good a priori information about the solution, and the lack of a "good" error metric. In this paper, we employ Bayesian methods, and present the mathematical framework for incorporating additional information in the form of prior statistics, and extra measurements. We also use Bayesian error metrics to evaluate the reconstructions, and select prior models. We apply the methods to inverse electrocardiography problem. The results show that we can improve the reconstructions by including extra information, and Bayesian error metrics are useful in evaluating the results.
Proceedings 2003 International Conference on Image Processing,(ICIP-2003) 14-17 Sept. 2003

Suggestions

A New Approach to Investigation of the Relationship of VLF Signals by Using Longitudinal Analysis Models
Guzel, E.; Yaşar, M.; Kılıç, M. B.; Canyılmaz, M. (Hindawi Limited, 2013)
Longitudinal analysis models are applied to analyze very low frequency (VLF) electromagnetic waves signals. They are useful in realization of nuance of relationship between parameters of concern which change over time. VLF data are so important for the communication and determining the disturbances in the lower ionosphere. In this study, we used a four-day VLF signal data which come from transmitter stations located at two different countries to Elazi. g receiver system. A very important feature of this dat...
Evaluation of classical and sparsity-based methods for parametric recovery problems
Başkaya, Hasan Can; Öktem, Figen S..; Department of Electrical and Electronics Engineering (2020)
Parametric reconstruction problems arise in many areas such as array processing, wireless communication, source separation, and spectroscopy. In a parametric recovery problem, the unknown model parameters in each superimposed signal are estimated from noisy observations. Classical methods perform the recovery over directly on the continuous-valued parameter space by solving a nonlinear inverse problem. Recently sparsity-based methods have also been applied to parametric recovery problems. These methods disc...
The Fast Multipole Method for Sparse Solution of Linear Inverse Scattering Problems
Miran, Emre Alp; Koç, Seyit Sencer (2018-11-02)
The sparse solution for the linear inverse problems provide useful results for many fundamental engineering applications such as radar imaging. The studies in the literature has shown that the computational methods for the sparse solution tend to be slow as the imaging problem gets electromagnetically large, therefore the image reconstruction gets harder for the existing computational resources. The fast multipole method (FMM) can reduce the number of operations and the memory requirement for the solution o...
A direct BEM solution to MHD flow in electrodynamically coupled rectangular channels
Bozkaya, Canan; Tezer, Münevver (2012-08-15)
Magnetohydrodynamic flows in coupled rectangular channels are numerically investigated under an external, horizontally applied magnetic field. The flows are driven by constant pressure gradients in the channels, which are separated with a thin partly insulating and partly conducting barrier. A direct boundary element formulation is utilized to solve these two-dimensional steady, convection-diffusion type coupled partial differential equations in terms of velocity and induced magnetic fields. The resulting s...
Evaluation of Sparsity-based Methods for Parameterized Source Separation
Baskaya, Hasan Can; Öktem, Sevinç Figen (2020-10-07)
Parametric reconstruction problems arise in many areas such as array processing, wireless communication, source separation, and spectroscopy. In a parametric recovery problem, the unknown model parameters in each superimposed signal are estimated from noisy observations. Sparsity-based methods used in compressive sensing are also applied to parametric recovery problems. These methods discretize the parameter space to form a dictionary whose atoms correspond to candidate parameter values, represent the data ...
Citation Formats
Y. Serinağaoğlu Doğrusöz and R. S. Macleod, “A Bayesian approach to inclusion and performance analysis of using extra information in bioelectric inverse problems,” Barcelona, Spain, 2003, vol. 1, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86693.