Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Understanding of the diversity of earthquake turbiditic flows in a single lake: the case of the Lake Hazar on the East Anatolian Faul
Date
2014-08-18
Author
Lamair, Laura
Hage, Sophie
Hubert-ferrari, Aurelia
Avşar, Ulaş
Garcia Moreno, David
Boulvain, Frederic
Çağatay, Namık
Metadata
Show full item record
Item Usage Stats
143
views
0
downloads
Cite This
The East Anatolian Fault (EAF) is a major left-lateral strike-slip fault accommodating with the conjugate North Anatolian Fault the westward extrusion of the Anatolian Plate away from the Arabia-Eurasia collision zone. The East Anatolian Fault ruptured over most of its length during the 19th century in a series of magnitude ~7 earthquakes. During the 20th century this fault was less active with only two events of magnitude greater than 6. This absence of large earthquakes has resulted in relatively little attention being paid to the East Anatolian Fault compared to the North Anatolian Fault, which has ruptured during the last century in several earthquakes of Ms~7. To constrain the seismic history of the East Anatolian Fault in its central part, we focus on the Hazar Lake, occupying a 20 km long pull-apart basin. Short cores and long sedimentary cores were collected at three different sites to retrieve a paleoseismic record. Small correlative coarse-grained sedimentary events are identified in all cores. The age of the events is inferred combining radiocarbon and radionuclide (137 Cs and 210Pb) dating. We present here detailed analyses of three sedimentary events assigned respectively to the historical earthquakes occurring in 1789, 1513-1514, 1285. The source of the sedimentary events is different at the three sites. We combine X-ray imagery, magnetic susceptibility, grain-size and XRF measurements with thin section analysis to investigate the nature of sedimentary events. The analyses show first that the three sedimentary events are different. The magnitude of the terrigenous signal varies significantly. Second the correlative events have a different expression at the three sites. So each site has a different and specific sensitivity. In particular, an individual event can be composed of several coarse-grained sub-events of different magnitude with a time lapse in between greater than a week. The latter is reveals by the presence of bioturbation in particular by chironomids in individual thin sand layers. Thin section also shows that subevents are gradded. Each coarse-grained layer is thus a separated turbiditic flow. The site with the highest sensitivity is the one located near the near-shore steep submarine southern slopes overhanged by the steep subaerial slopes of the Hazar Mountains. The rivers draining the Hazar Mountains are ephemeral and provide a restricted sedimentary supply. In addition, seismic reflection data show that the submarine slopes do not to accumulate a significant sedimentary load. However on these steep slopes, an earthquake intensity of 6 or less is enough to trigger a slope failure and the associated turbiditic flow. We conclude that the different sub-events at this site may record a complete earthquake sequence, i.e the main-shock and its foreshocks and aftershocks.
URI
https://hdl.handle.net/11511/87019
http://ginras.ru/struct/19/files/ISC2014_ABSTRACT_BOOK.pdf
Conference Name
19th International Sedimentological Congress from 18 to 22 August 2014
Collections
Department of Geological Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A 3000 yr paleoseismological history of the central East Anatolian Fault (Turkey) based on sedimentary record of Hazar Lake
Lamaır, Laura; Hubert-ferrari, Aurelia; Hage, Sophie; Avşar, Ulaş; Schmidt, Sabine; Çağatay, Namık (null; 2017-10-12)
The East Anatolian Fault (EAF) is a major left-lateral strike-slip fault accommodating with the conjugate North Anatolian Fault the westward extrusion of the Anatolian Plate away from the Arabia-Eurasia collision zone. During the 20th century, the EAF activity was mostly quiestcent with only two events of magnitude greater than 6 recorded (1905 Malatya and the 1971 Bingol earthquakes). Historical seismicity suggests that the EAF is capable of generating earthquakes of magnitude greater than 7. In order to r...
Paleoseismological record of the Hazar Lake along the East Anatolian Fault (Turkey)
Hubert-ferrari, Aurelia; Lamair, Laura; Hage, Sophie; Avşar, Ulaş; El Ouahabi, Meriam; Çağatay, Namık (2015-08-02)
The East Anatolian Fault (EAF) is a major left-lateral strike-slip fault accommodating with the conjugate North Anatolian Fault the westward extrusion of the Anatolian Plate away from the Arabia-Eurasia collision zone. The East Anatolian Fault ruptured over most of its length during the 19th century in a series of magnitude ~7 earthquakes. During the 20th century this fault was less active with only two events of magnitude greater than 6. This absence of large earthquakes has resulted in relatively little a...
Preliminary results about the Quaternary activity of the Ovacık Fault Eastern Turkey
Zabcı, Cengiz; Sançar, Taylan; Aktağ, Alican; Akçar, Naki (2014-04-12)
The Erzincan Basin and the surrounding region have a complex structure, which is formed by the interaction of the North Anatolian Fault (NAF), the Northeast Anatolian Fault (NEAF), the Pülümür Fault (PF), and the Ovacık Fault (OF). The region has been shaked many times by devastating earthquakes throughout both the instrumental and the historical periods. The infamous 26 December 1939 Erzincan Earthquake (M~7.9) is the largest event, which was instrumentally recorded along the NAF. Moreover, the eastern con...
Displacements and Kinematics of the February 1, 1944 Gerede Earthquake (North Anatolian Fault System, Turkey): Geodetic and Geological Constraints
Ayhan, Mehmet Emin; Kocyigit, Ali (2010-01-01)
The North Anatolian Fault System (NAFS) is an approximately 2-110-km-wide, 1600-km-long right-lateral intra-continental transform fault boundary between the Anatolian platelet and the Eurasian plate. The Gerede fault zone is one of the major active structures in the western section of the NAFS. It is a 1-9-km-wide, 325-km-long and ENE-trending dextral strike-slip fault zone, with a total accumulated offset since its initiation (Late Pliocene) of about 43 km. This offset indicates an average geological slip ...
Defining additional stratigraphy in paleoseismic trenches by 2d logging of magnetic susceptibility :A paleoseismic investigation near lake Ladik, North Anatolian fault, Turkey
Fraser, Jeff; Hubert-ferrari, Aurelia; Vanneste, Kris; Avşar, Ulaş; Altınok, Sevgi (null; 2008-12-19)
The North Anatolian Fault (NAF) is a dextral strike-slip plate-boundary fault zone extending ~1400 km in an arc across northern Turkey. We opened a paleoseismic trench ~2.7 km NW of Destek village on a segment which ruptured (for ~280 km) in the 1943 Ladik Earthquake (Mw:7.7). Sediments exposed in the trench yielded information on the timing of at least 6 paleoearthquake events during the last 3000 years in addition to evidence of the 1943 event. The trench was excavated across an uphill-facing fault scarp ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. Lamair et al., “Understanding of the diversity of earthquake turbiditic flows in a single lake: the case of the Lake Hazar on the East Anatolian Faul,” presented at the 19th International Sedimentological Congress from 18 to 22 August 2014, Geneva, Switzerland, 2014, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/87019.