Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
DRIE process optimization to achieve high aspect ratio for capacitive MEMS sensors
Date
2015-09-23
Author
Aydemir, Akın
Akın, Tayfun
Metadata
Show full item record
Item Usage Stats
168
views
0
downloads
Cite This
This paper focuses on process optimization of deep reactive ion etching (DRIE) to achieve high aspect ratio structures, specifically the fabrication of capacitive sensors. Very high aspect ratios up to 70:1 on trenches of 1.0 µm and have been achieved using the Bosch process by optimizing the process parameters. Effects of the process parameters on the etch rate, profile angle, and selectivity to the masking material are investigated in detail. This approach can be easily integrated on conventional ICP equipment to achieve high aspect ratio structures on any trench dimension.
Subject Keywords
DRIE
,
High aspect ratio
,
Process optimization
,
Silicon etching
URI
https://hdl.handle.net/11511/87028
https://www.researchgate.net/profile/Akin_Aydemir/publication/280728731_DRIE_Process_Optimization_to_Achieve_High_Aspect_Ratio_for_Capacitive_MEMS_Sensors/links/560a4b7108ae1396914bb23a.pdf
Conference Name
MME 2015 :26th Micromechanics and Microsystems Europe workshop
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Free standing layer-by-layer films of polyethyleneimine and poly(l-lysine) for potential use in corneal stroma engineering
Altay, Gizem; Hasırcı, Vasıf Nejat; Khademhosseini, Ali; Department of Biomedical Engineering (2011)
In this study we fabricated free standing multilayer films of polyelectrolyte complexes for potential use in tissue engineering of corneal stroma by using the layer-by-layer (LbL) approach. In the formation of these LbL films negatively charged, photocrosslinkable (methacrylated) hyaluronic acid (MA-HA) was used along with polycations polyethyleneimine (PEI) and poly(L-lysine) (PLL). Type I collagen (Col) was blended in with PLL for improving the water absorption and cell attachment properties of the films....
Elliptical pin fins as an alternative to circular pin fins for gas turbine blade cooling applications part 1 endwall heat transfer and total pressure loss characteristics
Uzol, Oğuz (null; 2001-06-07)
Detailed experimental investigation of the wall heat transfer enhancement and total pressure loss characteristics for two alternative elliptical pin fin arrays is conducted and the results are compared to the conventional circular pin fin arrays. Two different elliptical pin fin geometries with different major axis lengths are tested, both having a minor axis length equal to the circular fin diameter and positioned at zero degrees angle of attack to the free stream flow. The major axis lengths for the two e...
Deep-trench RIE optimization for high performance MEMS microsensors
Aydemir, Akın; Turan, Raşit; Department of Physics (2007)
This thesis presents the optimization of deep reactive ion etching process (DRIE) to achieve high precision 3-dimensional integrated micro electro mechanical systems (MEMS) sensors with high aspect ratio structures. Two optimization processes have been performed to achieve 20 μm depth for 1 μm opening for a dissolved wafer process (DWP) and to achieve 100 μm depth for 1 μm opening for silicon-on-glass (SOG) process. A number of parameters affecting the etch rate and profile angle are investigated, including...
Performance of solar cells fabricated on black multicrystalline Si by nanowire decoration
Es, Fırat; Çiftpınar, Emine Hande; Demircioğlu, Olgu; Günöven, Mete; Kulakci, Mustafa; Turan, Raşit (2015-03-30)
Vertically aligned Si nanowire (NW) arrays fabricated by metal-assisted etching technique were applied to industrial sized (156 mm x 156 mm) multicrystalline Si cells as an anti-reflective (AR) medium. The NW lengths (between 0.15 and 2.2 mu m) were controlled by etch duration from 5 to 50 min. A completely black surface could be observed, demonstrating excellent AR properties in the entire range of the solar spectrum, even without additional anti-reflective coating layer (e.g., SiNx:H). Standard Si solar c...
Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors
Kanbur, Yasin; Irimia-Vladu, Mihai; Glowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Guenther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; ERTEN ELA, ŞULE; Schwoediauer, Reinhard; Sitter, Helmut; Kucukyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar (2012-05-01)
We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C-60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm(2)/Vs. Devices with pentacene showed a mobility of 0.16 cm(2)/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of similar to...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Aydemir and T. Akın, “DRIE process optimization to achieve high aspect ratio for capacitive MEMS sensors,” presented at the MME 2015 :26th Micromechanics and Microsystems Europe workshop, Toledo, Spain, 2015, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/87028.