Beklenti maksimizasyonu ile genişletilmiş hedef izleme

2019-03-01
Bu çalışmada genişletilmiş hedef izleme (GHİ) problemi ele alınmıştır. GHİ problemi klasik hedef izleme probleminden farklı olarak, bir hedefin tek bir anda birden fazla ölçüme sebep olması durumunu inceler. Bu varsayım altında toplanan ölçümlerden, hedefin hem kinematik bilgileri hem de şekli kestirilir. Literatürde bu problemi çözmeye yönelik yaklaşık çözümlü algoritmalar vardır. Ancak bu çalışmaların pek çoğu teorik alt yapısı zayıf olan buluşsal çözüm önerileri içerir. Bu çalışmada yüzeyi birden çok elips ile gösterilebilen bir hedefi takip eden ve hedefin şeklini öğrenebilen beklenti maksimizasyonu (BM) temelli yeni bir yöntem geliştirilmiştir. GHİ problemi stokastik durum uzay modellerinde parametre kestirimi problemi haline getirilmiş ve parçacık filtresi kullanarak kestirim yapılmıştır. Simülasyonlarda çoklu elipsten oluşan ve bilinmeyen şekle sahip bir genişletilmiş hedef isabetle takip edilmiş ve hedefin şekli başarıyla kestirilmiştir.
ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ DERGİSİ

Suggestions

Range parameterized bearings only tracking using particle filter
Arslan, Ali Erkin; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2012)
In this study, accurate target tracking for bearings-only tracking problem is investigated. A new tracking filter for this nonlinear problem is designed where both range parameterization and Rao-Blackwellized (marginalized) particle filtering techniques are used in a Gaussian mixture formulation to track both constant velocity and maneuvering targets. The idea of using target turn rate in the state equation in such a way that marginalization is possible is elaborated. Addition to nonlinear nature, unobserva...
Variational smoothing for extended target tracking with random matrices
Kartal, Savaş Erdem; Orguner, Umut; Department of Electrical and Electronics Engineering (2022-4-05)
In this thesis, two Bayesian smoothers are proposed for random matrix based extended target tracking (ETT). The proposed smoothers are based on the variational Bayes techniques and they are derived for an extended target model without and with orientation. The random matrix models of Feldman et al. and Tuncer and Özkan are used as the extended target models without and with orientation, respectively. The performance of both smoothers is evaluated using simulation results on two different scenarios. It is se...
Particle filter based track before detect algorithm for tracking of dim moving targets
Sabuncu, Murat; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2012)
In this study Track Before Detect (TBD) approach will be analysed for tracking of dim moving targets. First, a radar setup is presented in order to introduce the radar range equation and signal models. Then, preliminary information is given about particle filters. As the main algorithm of this thesis, a multi-model particle filter method is developed in order to solve the non-linear non-Gaussian Bayesian estimation problem. Probability of target existence and RMS estimation accuracy are defined as the perfo...
Target tracking with correlated measurement noise
Okşar, Yeşim; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2007)
A white Gaussian noise measurement model is widely used in target tracking problem formulation. In practice, the measurement noise may not be white. This phenomenon is due to the scintillation of the target. In many radar systems, the measurement frequency is high enough so that the correlation cannot be ignored without degrading tracking performance. In this thesis, target tracking problem with correlated measurement noise is considered. The correlated measurement noise is modeled by a first-order Markov m...
Target tracking with input estimation
Gazioğlu, Ersen; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2005)
In this thesis, the target tracking problem with input estimation is investigated. The estimation performance of the optimum decoding based smoothing algorithm and a target tracking scheme based on the Kalman filter is compared by performing simulations. The advantages and the disadvantages of these algorithms are presented.
Citation Formats
E. Özkan, “Beklenti maksimizasyonu ile genişletilmiş hedef izleme,” ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ DERGİSİ, pp. 145–154, 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/87846.