Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Implementation and analysis of temperature control strategies for outdoor photobiological hydrogen production
Date
2014-01-01
Author
Deo Androga, Dominic
Koku, Harun
Uyar, Başar
Eroglu, Inci
Metadata
Show full item record
Item Usage Stats
192
views
0
downloads
Cite This
In applications of industrial biotechnology, maintaining an optimal temperature range is crucial for growth and proper functioning of microorganisms. For outdoor photobiological hydrogen production many parameters are beyond manipulation, hence effective control of temperature in photobioreactors is a challenge. In this work, an internal cooling system was designed and built, and its performance in outdoor tubular photobioreactors tested during summer months in Ankara, Turkey. Media with and without bacteria (Rhodobacter capsulatus YO3) were used. Countercurrent and co-current cooling modes were implemented to stabilize the reactor temperature. The temperatures were found to be strongly influenced by solar irradiation and ambient air temperature during daytime, and the surface temperature was found to be approximately constant along the reactor length. Heat effects on the external pumping and piping units were found to significantly increase the cooling duty. Counter-current cooling was found to be more effective compared to co-current cooling in controlling temperatures inside the reactor. High biomass growth rate (0.10 1/h) and hydrogen production rate (maximum 1.28 mmol/L/h) was achieved in the outdoor operations.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84924993892&origin=inward
https://hdl.handle.net/11511/88184
Conference Name
World Hydrogen Energy Conference, WHEC 2014, (15 - 20 Haziran 2014)
Collections
Department of Chemical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Modeling and simulation of photobioreactors for biological hydrogen production
Androga, Dominic Deo; Eroğlu, İnci; Uyar, Başar; Department of Biotechnology (2014)
In applications of photofermentative hydrogen production, maintaining optimal temperature, feed composition, pH range and light intensity is the most critical objective for growth and proper functioning of the photosynthetic bacteria. Response Surface Methodology was applied to optimize temperature and light intensity for indoor hydrogen production using Rhodobacter capsulatus. Surface and contour plots of the regressions models developed revealed a maximum hydrogen production rate of 0.566 mol H2/m3/h at 2...
Applications of the multifunctional magnetic nanoparticles for development of molecular therapies for breast cancer
Aşık, Elif; Güray, Tülin; Volkan, Mürvet; Department of Biotechnology (2015)
The understanding of how magnetic nanoparticles (MNPs) interact with living system is one of the prerequisite pieces of information needed to be obtained before any further development for desired biomedical applications. In this study, Cobalt Ferrite magnetic nanoparticles (CoFe-MNPs) in their naked and silica-coated forms were characterized. In vitro cell culture for their likely cytotoxicity and genotoxicity potential were examined. The apoptosis, lipid peroxidation, ROS formation and oxidative stress re...
Development and characterization of composite proton exchange membranes for fuel cell applications
Akay, Ramiz Gültekin; Baç, Nurcan; Department of Chemical Engineering (2008)
Intensive research on development of alternative low cost, high temperature membranes for proton exchange membrane (PEM) fuel cells is going on because of the well-known limitations of industry standard perfluoro-sulfonic acid (PFSA) membranes. To overcome these limitations such as the decrease in performance at high temperatures (>80 0C) and high cost, non-fluorinated aromatic hydrocarbon based polymers are attractive. The objective of this study is to develop alternative membranes that possess comparable ...
Application of the bentix index in assessing ecological quality of hard substrata: a case study from the Bosphorus Strait, Turkey
KALKAN, E.; KARHAN, S.U.; MUTLU, E.; SIMBOURA, N.; BEKOLET, M. (National Documentation Centre (EKT), 2007-6-1)
In this paper, a biotic index (Bentix) has been used for the assessment of ecological quality status of shallow water hard substrate benthic ecosystems affected by coastal sewage discharges in the Bosphorus Strait. A significant difference was observed between the control and the discharge stations with regard to Bentix values (Mann-Whitney U Test, p=0.002) and ecological quality status of the discharge stations was worse than that of controls. The index values revealed that sewage discharges caused ser...
Marine Chemical Technology and Sensors for Marine Waters: Potentials and Limits
Moore, Tommy S.; Mullaugh, Katherine. M.; Holyoke, Rebecca R.; Madison, Andrew S.; Yücel, Mustafa; Luther, George W. (2009-01-01)
A significant need exists for in situ sensors that can measure chemical species involved in the major processes of primary production (photosynthesis and chemosynthesis) and respiration. Some key chemical species are O-2, nutrients (N and P), micronutrients (metals), pCO(2), dissolved inorganic carbon (DIC) pH, and sulfide. Sensors need to have excellent detection limits, precision, selectivity, response time, a large dynamic concentration range, low power consumption, robustness, and less variation of inst...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Deo Androga, H. Koku, B. Uyar, and I. Eroglu, “Implementation and analysis of temperature control strategies for outdoor photobiological hydrogen production,” Gwangju, Güney Kore, 2014, vol. 2, p. 1283, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84924993892&origin=inward.