Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites
Date
2020-06-01
Author
Tulbez, Simge
ESEN, ZİYA
Dericioğlu, Arcan Fehmi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
325
views
0
downloads
Cite This
The present study investigates the effect of additional carbon source, in the form of carbon nanotubes (CNTs), on mechanical and thermal properties of carbon fiber reinforced silicon carbide (C/C-SiC) ceramic matrix composites (CMC) produced by liquid silicon infiltration (LSI) technique. The CNTs used in this study were impregnated into the C/C preforms before the liquid silicon infiltration stage. The results showed that the addition of excess carbon to the C/C preforms in the form of CNTs enhanced Si infiltration efficiency significantly resulting in C/C-SiC composites with higher density and microstructural uniformity. Accordingly, the addition of CNTs improved the flexural strength of the composites by 40% with respect to no-CNT-containing composites due to a lower amount of residual porosity and additional reinforcement effect of the unreacted CNTs. The thermal conductivity of the resulting C/C-SiC composites has been also increased by 31% and 18% parallel and perpendicular to the carbon fiber-woven fabric surface, respectively, by CNT addition.Graphical abstract
URI
https://hdl.handle.net/11511/88510
Journal
ADVANCED COMPOSITES AND HYBRID MATERIALS
DOI
https://doi.org/10.1007/s42114-020-00155-3
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites
Tanabi, Hamed; Erdal Erdoğmuş, Merve (Elsevier BV, 2019-03-01)
The remarkable electrical and mechanical properties of carbon nanotubes (CNTs) render CNT-reinforced nanocomposites as potentially attractive materials for strain-sensing and monitoring purposes. The dispersion state of CNTs in polymeric matrix has a significant role on the physical and the mechanical properties of the resulting CNT reinforced nanocomposites. In this study, a series of experiments were designed to investigate the effect of dispersion process parameters and CNT concentration, as well as thei...
Effects of Graphene Transfer and Thermal Annealing on Anticorrosive Properties of Stainless Steel
Oh, Jeong Hyeon; Han, Sangmok; Kim, Tae-Yoon; PARK, JONGEE; Öztürk, Abdullah; Kim, Soo Young (2017-11-01)
Stainless steel (STS) films were annealed in a thermal quartz tube and covered with graphene to improve their anticorrosive properties. Graphene was synthesized via the chemical vapor deposition method and transferred onto the surface of the STS film by the layer-by-layer approach. The structure of the STS film changed from alpha-Fe to gamma-Fe after annealing at 700 C for 1 h, resulting in an increase of 82.72% in the inhibition efficiency. However, one-layer graphene acted as a conductive pathway and ther...
Effect of carbon nanotube surface treatment on the morphology, electrical, and mechanical properties of the microfiber-reinforced polyethylene/poly(ethylene terephthalate)/carbon nanotube composites
Yesil, Sertan; Bayram, Göknur (2013-01-15)
The aim of this study is to investigate the effects of carbon nanotube (CNT) chemical properties, CNT content, and molding temperature on the morphology, electrical, and mechanical properties of the microfiber-reinforced polymer composites. These composites were prepared by extrusion and hot stretching the poly(ethylene terephthalate) (PET)/CNT phase in high density polyethylene (HDPE) matrix. Surfaces of the CNT were modified by purification with strong acid mixture (HNO3 : H2SO4 mixture 1 : 1 by volume) f...
Effects of oxidative functionalization and aminosilanization of carbon nanotubes on the mechanical and thermal properties of polyamide 6 nanocomposites
Kaynak, Cevdet (SAGE Publications, 2013-11-13)
The focus of this study is to investigate the effects of oxidative functionalized carbon nanotubes (f-CNTs) and aminosilanized carbon nanotubes (s-CNTs) on the mechanical and thermal properties of polyamide 6 nanocomposites. Oxidation of nanotube surfaces was conducted with sulfuric acid/nitric acid mixture and then aminosilanization was carried out with -aminopropyltriethoxysilane. Nanocomposites were compounded by melt mixing technique and shaped by injection molding. Scanning electron microscopy images r...
Effect of post fabrication aging treatment on the microstructure, crystallographic texture and elevated temperature mechanical properties of IN718 alloy fabricated by selective laser melting
Ozer, Seren; Bilgin, Güney Mert; Davut, Kemal; Esen, Ziya; Dericioğlu, Arcan Fehmi (2022-08-01)
© 2022 Elsevier B.V.The effect of building direction and post fabrication aging treatment on the microstructure, crystallographic texture and high temperature mechanical properties of Inconel 718 (IN718) alloy fabricated by selective laser melting (SLM) method was investigated. After aging, arc-shaped structures seen in as-fabricated samples disappeared and converted into a mixture of columnar and equiaxed grains. Nano-sized γ″ and/or γ′ precipitates were formed upon aging; however, MC type carbides and Lav...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Tulbez, Z. ESEN, and A. F. Dericioğlu, “Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites,”
ADVANCED COMPOSITES AND HYBRID MATERIALS
, pp. 177–186, 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/88510.