Reduced order modelling of nonlinear cross-diffusion systems

2021-07-15
Karasözen, Bülent
Uzunca, Murat
Yıldız, Süleyman
In this work, we present reduced-order models (ROMs) for a nonlinear cross-diffusion problem from population dynamics, the Shigesada-Kawasaki-Teramoto (SKT) equation with Lotka-Volterra kinetics. The formation of the patterns of the SKT equation consists of a fast transient phase and a long stationary phase. Reduced order solutions are computed by separating the time into two time-intervals. In numerical experiments, we show for one- and two-dimensional SKT equations with pattern formation, the reduced-order solutions obtained in the time-windowed form, i.e., principal decomposition framework, are more accurate than the global proper orthogonal decomposition solutions obtained in the whole time interval. The finite-difference discretization of the SKT equation in space results in a system of linear-quadratic ordinary differential equations. The ROMs have the same linear-quadratic structure as the full order model. Using the linear-quadratic structure of the ROMs, the computation of the reduced-order solutions is further accelerated by the use of proper orthogonal decomposition in a tensorial framework so that the computations in the reduced system are independent of the full-order solutions. Furthermore, the prediction capabilities of the ROMs are illustrated for one- and two-dimensional patterns. Finally, we show that the entropy is decreasing by the reduced solutions, which is important for the global existence of solutions to the nonlinear cross-diffusion equations such as the SKT equation.
Applied Mathematics and Computation

Suggestions

Reduced Order Modelling for Reaction-Diffusion Equations with Cross Diffusion
Mülayim, Gülden; Karasözen, Bülent; Küçükseyhan, Tuğba; Uzunca, Murat (2017-04-29)
In this work, we present reduced-order models (ROMs) for a nonlinear cross-diffusion problem from population dynamics, the Shigesada-Kawasaki-Teramoto (SKT) equation with Lotka-Volterra kinetics. The formation of the patterns of the SKT equation consists of a fast transient phase and a long stationary phase. Reduced order solutions are computed by separating the time into two time-intervals. In numerical experiments, we show for one- and two-dimensional SKT equations with pattern formation, the reduced-orde...
Structure preserving model order reduction of shallow water equations
Karasözen, Bülent; UZUNCA, MURAT (2020-07-01)
In this paper, we present two different approaches for constructing reduced-order models (ROMs) for the two-dimensional shallow water equation (SWE). The first one is based on the noncanonical Hamiltonian/Poisson form of the SWE. After integration in time by the fully implicit average vector field method, ROMs are constructed with proper orthogonal decomposition(POD)/discrete empirical interpolation method that preserves the Hamiltonian structure. In the second approach, the SWE as a partial differential eq...
Reduced Order Optimal Control Using Proper Orthogonal Decomposition Sensitivities
Karasözen, Bülent (2015-06-02)
In general, reduced-order model (ROM) solutions obtained using proper orthogonal decomposition (POD) at a single parameter cannot approximate the solutions at other parameter values accurately. In this paper, parameter sensitivity analysis is performed for POD reduced order optimal control problems (OCPs) governed by linear diffusion-convection-reaction equations. The OCP is discretized in space and time by discontinuous Galerkin (dG) finite elements. We apply two techniques, extrapolating and expanding the...
Model order reduction for nonlinear Schrodinger equation
Karasözen, Bülent; Uzunca, Murat (2015-05-01)
We apply the proper orthogonal decomposition (POD) to the nonlinear Schrodinger (NLS) equation to derive a reduced order model. The NLS equation is discretized in space by finite differences and is solved in time by structure preserving symplectic mid-point rule. A priori error estimates are derived for the POD reduced dynamical system. Numerical results for one and two dimensional NLS equations, coupled NLS equation with soliton solutions show that the low-dimensional approximations obtained by POD reprodu...
Reduced order optimal control of the convective FitzHugh-Nagumo equations
Karasözen, Bülent; KÜÇÜKSEYHAN, TUĞBA (2020-02-15)
In this paper, we compare three model order reduction methods: the proper orthogonal decomposition (POD), discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) for the optimal control of the convective FitzHugh-Nagumo (FHN) equations. The convective FHN equations consist of the semi-linear activator and the linear inhibitor equations, modeling blood coagulation in moving excitable media. The semilinear activator equation leads to a non-convex optimal control problem (OCP). The ...
Citation Formats
B. Karasözen, M. Uzunca, and S. Yıldız, “Reduced order modelling of nonlinear cross-diffusion systems,” Applied Mathematics and Computation, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89146.