Investigation of ultrafast energy transfer mechanism in BODIPY-Porphyrin dyad system

2019-03-01
Dumanogullari, Fatih Mehmet
Tutel, Yusuf
Kucukoz, Betul
Sevinc, Gokhan
Karatay, Ahmet
Yilmaz, Halil
Hayvali, Mustafa
Elmali, Ayhan
Novel beta-fused BODIPY-Porphyrin compounds that contain free base porphyrin (TPP2BDP) and its Ni(II) complex (NiTPP2BDP) were synthesized to investigate intramolecular energy transfer mechanisms of beta-fused BODIPY-porphyrin dyads and effect of the unfilled d shell metal ion on energy transfer mechanism. Fluorescence spectra of compounds exhibited that BODIPY emission was diminished upon excitation of the BODIPY unit because of the energy transfer from BODIPY to porphyrin unit. Femtosecond pump-probe spectroscopy measurements revealed that energy transfer of investigated compounds are faster than previous studies in literature. Rapid energy transfer (about 500 fs) from BODIPY to porphyrin was observed for both compounds when BODIPY unit is excited due to direct linkage of BODIPY to porphyrin unit. Intersystem crossing mechanism was also observed for the compound that contains free base porphyrin (TPP2BDP), whereas d-d transition was observed for the compound that contains metalloporphyrin (NiTPP2BDP) due to unfilled d orbital of Ni(II)ion.
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY

Suggestions

Investigation of characteristics of urea and butyrylcholine chloride biosensors based on ion-selective field-effect transistors modified by the incorporation of heat-treated zeolite Beta crystals
Soy, Esin; Arkhypova, Valentyna; Soldatkin, Oleksandr; Shelyakina, Margarita; Dzyadevych, Sergei; Warzywoda, Juliusz; Sacco, Albert; Akata Kurç, Burcu (2012-10-01)
Urea and butyrylcholine chloride (BuChCl) biosensors were prepared by adsorption of urease and butyrylcholinesterase (BuChE) on heat-treated zeolite Beta crystals, which were incorporated into membranes deposited on ion-selective field-effect transistor (ISFET) surfaces. The responses, stabilities, and use for inhibition analysis of these biosensors were investigated. Different heat treatment procedures changed the amount of Bronsted acid sites without affecting the size, morphology, overall Si/Al ratio, ex...
Modeling of Magnetic Properties of Nanocrystalline La-doped Barium Hexaferrite
KÜÇÜK, İLKER; Sozeri, Huseyin; Ozkan, Husnu (Springer Science and Business Media LLC, 2011-05-01)
In this paper an artificial neural network (ANN) has been developed to compute the magnetization of the pure and La-doped barium ferrite powders synthesized in ammonium nitrate melt. The input parameters were: the Fe/Ba ratio, La content, sintering temperature, HCl washing and applied magnetic field. A total of 8284 input data set from currently measured 35 different samples with different Fe/Ba ratios, La contents and washed or not washed in HCl were available. These data were used in the training set for ...
Enhancement in Oxygen Reduction Reaction Activity of Nitrogen-Doped Carbon Nanostructures in Acidic Media through Chloride-Ion Exposure
Jain, Deeksha; Mamtani, Kuldeep; Gustin, Vance; Gunduz, Seval; Çelik, Gökhan; Waluyo, Iradwikanari; Hunt, Adrian; Co, Anne C.; Ozkan, Umit S. (2018-07-11)
Nitrogen-doped carbon nanostructures (CNx) are promising cathode materials as catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte membrane (PEM) fuel cells. Incorporation of chlorine into CNx catalysts using a facile methodology can lead to a significant improvement in the ORR activity in acidic media, as confirmed by electrochemical half-cell measurements. The chlorine-containing CNx catalyst (CNx-Cl) is synthesized by soaking CNx powder in 0.3 M HCl. The analysis of near-edge X-ray ab...
Investigation of glucose electrooxidation mechanism over N-modified metal-doped graphene electrode by density functional theory approach
Duzenli, Derya; Önal, Işık; Tezsevin, Ilker (2022-10-01)
In this work, various precious and non-precious metals reported in the literature as the most effective catalysts for glucose electrooxidation reaction were investigated by the density functional theory (DFT) approach in order to reveal the mechanisms taking place over the catalysts in the fuel cell. The use of a single-atom catalyst model was adopted by insertion of one Au, Cu, Ni, Pd, Pt, and Zn metal atom on the pyridinic N atoms doped graphene surface (NG). beta form of d-glucose in alkaline solution wa...
Development of activated carbon/bimetallic transition metal phosphide composite materials for electrochemical capacitors and oxygen evolution reaction catalysis
Köse, Kadir Özgün; Aydınol, Mehmet Kadri (2022-09-01)
Pinecone-derived activated carbon (AC) and bimetallic transition metal phosphide (TMP) composites were produced and utilized as electrochemical capacitor (EC) electrodes and oxygen evolution reaction (OER) catalysts in this study. The base transition metal (TM) was Ni for all samples, and the secondary TM was one of Fe, Mn and Co. AC serves as a porous structure for double layer formation and active sites for OER catalysis. Bimetallic TMP is utilized due to redox reactions in EC and catalytic activity in OE...
Citation Formats
F. M. Dumanogullari et al., “Investigation of ultrafast energy transfer mechanism in BODIPY-Porphyrin dyad system,” JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, pp. 116–121, 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89322.