Elucidating the Barriers on Direct Water Splitting: Key Role of Oxygen Vacancy Density and Coordination over PbTiO3 and TiO2

2021-01-01
METE, ERSEN
Ellialtioglu, Sinasi
GÜLSEREN, Oğuz
Üner, Deniz
In this work, using the state-of-the-art first-principles calculations based on density functional theory, we found that the concentration and coordination of surface oxygen vacancies with respect to each other were critical for the direct water-splitting reaction on the (001) surfaces of PbTiO3 and TiO2. For the water-splitting reaction to happen on TiO2-terminated surfaces, it is necessary to have two neighboring O vacancies acting as active sites that host two adsorbing water molecules. However, eventual dissociation of O-H bonds is possible only in the presence of an additional nearest-neighbor O vacancy. Unfortunately, this necessary third vacancy inhibits the formation of molecular hydrogen by trapping the dissociated H atoms on TiO2 terminated surfaces. Formation of up to three O vacancies is energetically less costly on both terminations of PbTiO3 (001) surfaces compared with those on TiO2; the presence of Pb leads to weaker O bonds over these surfaces. Molecular hydrogen formation is more favorable on the PbO-terminated surface of PbTiO3, requiring only two neighboring oxygen vacancies. However, the hydrogen molecule is retained near the surface by weak van der Waals forces. Our study indicates two barriers leading to low productivity of direct water-splitting processes. First and foremost, there is an entropic barrier imposed by the requirement of at least two nearest-neighbor O vacancies, sterically hindering the process. Furthermore, there are also enthalpic barriers of formation on TiO2-terminated surfaces or removal of H-2 molecules from the PbO-terminated surface. The requirement dictating three nearest-neighbor oxygen vacancies for hydrogen evolution is also consistent with the chemical intuition: The nearest neighbor of the formed hydrogen should be reduced enough to inhibit spontaneous oxidation under ambient conditions.
JOURNAL OF PHYSICAL CHEMISTRY C

Suggestions

Elucidating the role of adsorption during artificial photosynthesis: H2O and CO2 adsorption isotherms over TiO2 reveal thermal effects under UV illumination
Üner, Deniz; Yılmaz, Begüm (2022-06-01)
Adsorption measurements of CO2 and H2O over TiO2 surfaces in dark and under illumination were carried out to reveal the ensuing bottlenecks of the initial steps of the artificial photosynthesis reaction. When the adsorption isotherms of both CO2 and H2O were measured under illumination, the results were comparable to isotherms measured at higher temperatures in dark. This evidence is interpreted as the presence of hot spots, due to charge carrier recombination reactions. Differential heat of adsorption meas...
Investigation of ruthenium-copper bimetallic catalysts for direct epoxidation of propylene: A DFT study
Kizilkaya, Ali Can; Senkan, Selim; Önal, Işık (2010-09-01)
Propylene epoxidation reactions are carried out on Ru-Cu(1 1 1) and Cu(1 1 1) surfaces with periodic density functional theory (DFT) calculations. Ru-Cu(1 1 1) surface is modeled as Cu(1 1 1) monolayer totally covering the Ru(0 0 0 1) surface underneath, in accordance with the literature. It is shown that the Ru-Cu(1 1 1) surface is ineffective for propylene oxide formation since it has a lower energy barrier (0.48 eV) for the stripping of the allylic hydrogen of propylene and a higher energy barrier (0.92 ...
An ONIOM and DFT Study of Water Adsorption on Rutile TiO2 (110) Cluster
Erdogan, Rezan; Fellah, Mehmet Ferdi; Önal, Işık (2011-01-01)
Density functional theory (DFT) calculations performed at ONIOM DFT B3LYP/6-31G**-MD/UFF level are employed to study molecular and dissociative water adsorption on rutile TiO2 (110) surface represented by partially relaxed Ti25O37 ONIOM cluster. DFT calculations indicate that dissociative water adsorption is not favorable because of high activation barrier (23.2 kcal/mol). The adsorption energy and vibration frequency of both molecularly and dissociatively adsorbed water molecule on rutile TiO2 (110) surfac...
A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface
Soyer, Sezen; Uzun, Alper; Senkan, Selim; Önal, Işık (2006-12-15)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by means of density functional theory (DFT) calculations performed at B3LYP/6-31G** level. The computations indicated that SCR reaction consisted of three main parts. For the first part, ammonia activation on V2O5 was investigated. Ammonia was adsorbed on Bronsted acidic V-OH site as NH4+ species by a non-activated process with an exothermic relati...
Analysis of Transient Laminar Forced Convection of Nanofluids in Circular Channels
Sert, İsmail Ozan; Sezer Uzol, Nilay; Güvenç Yazıcıoğlu, Almıla; Kakaç, Sadık (2012-11-15)
In this study, forced convection heat transfer Characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydrodynamically fully developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analys...
Citation Formats
E. METE, S. Ellialtioglu, O. GÜLSEREN, and D. Üner, “Elucidating the Barriers on Direct Water Splitting: Key Role of Oxygen Vacancy Density and Coordination over PbTiO3 and TiO2,” JOURNAL OF PHYSICAL CHEMISTRY C, pp. 1874–1880, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89397.