Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Generating the Mapping Class Group of a Nonorientable Surface by Two Elements or by Three Involutions
Download
index.pdf
Date
2022-01-01
Author
Altunöz, Tülin
Pamuk, Mehmetcik
Yildiz, Oguz
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
232
views
55
downloads
Cite This
We prove that, for g≥ 19 the mapping class group of a nonorientable surface of genus g, Mod (Ng) , can be generated by two elements, one of which is of order g. We also prove that for g≥ 26 , Mod (Ng) can be generated by three involutions.
Subject Keywords
Involutions
,
Mapping class groups
,
Nonorientable surfaces
URI
https://hdl.handle.net/11511/97730
Journal
Bulletin of the Brazilian Mathematical Society
DOI
https://doi.org/10.1007/s00574-022-00299-4
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Automorphisms of curve complexes on nonorientable surfaces
Atalan, Ferihe; Korkmaz, Mustafa (2014-01-01)
For a compact connected nonorientable surface N of genus g with n boundary components, we prove that the natural map from the mapping class group of N to the automorphism group of the curve complex of N is an isomorphism provided that g + n >= 5. We also prove that two curve complexes are isomorphic if and only if the underlying surfaces are diffeomorphic.
Generating the twist subgroup by involutions
Altunöz, Tülin; Pamuk, Mehmetcik; Yildiz, Oguz (2020-01-01)
For a nonorientable surface, the twist subgroup is an index 2 subgroup of the mapping class group generated by Dehn twists about two-sided simple closed curves. In this paper, we consider involution generators of the twist subgroup and give generating sets of involutions with smaller number of generators than the ones known in the literature using new techniques for finding involution generators.
Torsion Generators Of The Twist Subgroup
Altunöz, Tülin; Pamuk, Mehmetcik; Yildiz, Oguz (2022-1-01)
We show that the twist subgroup of the mapping class group of a closed connected nonorientable surface of genus g >= 13 can be generated by two involutions and an element of order g or g -1 depending on whether 9 is odd or even respectively.
Mapping class groups of nonorientable surfaces
Korkmaz, Mustafa (2002-02-01)
We obtain a finite set of generators for the mapping class group of a nonorientable surface with punctures. We then compute the first homology group of the mapping class group and certain subgroups of it. As an application we prove that the image of a homomorphism from the mapping class group of a nonorientable surface of genus at least nine to the group of real-analytic diffeomorphisms of the circle is either trivial or of order two.
The mapping class group is generated by two commutators
Baykur, R. Inanc; Korkmaz, Mustafa (2021-05-01)
We show that the mapping class group of any closed connected orientable surface of genus at least five is generated by only two commutators, and if the genus is three or four, by three commutators. (C) 2021 Elsevier Inc. All rights reserved.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Altunöz, M. Pamuk, and O. Yildiz, “Generating the Mapping Class Group of a Nonorientable Surface by Two Elements or by Three Involutions,”
Bulletin of the Brazilian Mathematical Society
, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/97730.