Numerical investigation of dbd in neon:effect of fluid modelling approaches

Download
2021-2-11
Somay, Mehmet Hilmi
The study deals with numerical modelling of dielectric barrier discharge (DBD) in Neon gas. The DBD models are based on the drift-diffusion theory of gas discharges. Two different approaches, namely, the so called simple and extended fluid models, are followed. Within the simple fluid model, the ionization rate is approximated by the Townsend formula as a function of the local electric field. In the framework of the extended fluid model, the electron transport (mobility and diffusion) coefficients as well as the rates of the electron induced plasma-chemical reactions are determined as functions of the electron mean energy. These data are determined from the solution of the electron Boltzmann equation, by using Bolsig+ solver and verified by Comsol Multiphysics package. The electron kinetic coefficients are also computed assuming Maxwellian eedf. Numerical simulations are spatially one-dimensional, carried out using Comsol Multiphysics. The effect of different modelling approaches on the characteristics of DBD is investigated.

Suggestions

Field-Data-Based Modeling of Medium Frequency Induction Melting Furnaces for Power Quality Studies
Yilmaz, Ilker; Salor, Ozgul; Ermiş, Muammer (2011-10-13)
In this paper, the coreless, medium frequency induction melting furnace (IMF) system, has been represented by alternative field-data-based models, developed specifically for power quality studies. The IMF operation has been represented by a variable series RL circuit to model the fundamental components of electrical quantities, and a shunt-connected current source, to model the generated harmonics and interharmonics over a typical melting cycle. Both the sinusoidal coding method applied to the major harmoni...
On the elastic-plastic deformation of a centrally heated cylinder exhibiting linear hardening
Gulgec, M; Orcan, Y (1999-01-01)
A closed-form solution of the elastic-plastic deformation of a cylinder with uniform temperature inside its cylindrical core and zero surface temperature is presented for a linearly strain hardening material. The analysis is based on Tresca's yield condition and its associated flow rule. The effect of hardening on the expansion of plastic regions and on the distribution of stress is displayed graphically.
Unified assessment of stress scaling factors for liquefaction engineering problems
Çetin, Kemal Önder (2014-01-01)
Most of the widely used seismic soil liquefaction triggering methods propose cyclic resistance ratio (CRR) values valid at a reference normal effective stress (σv,0) of one atmosphere, and a zero static shear stress (τst,0) state. Then a series of correction factors are applied to the CRR to account for the effects due to variations from the reference normal effective and static shear stresses (i.e., Kσ and Kα corrections). In the literature exists a number of stress correction factors used for seismic soil...
Theoretical investigation of quercetin and its radical isomers
Erkoc, E; Erkoc, F; Keskin, N (Elsevier BV, 2003-08-01)
The structural and electronic properties of quercetin and its five radical isomers have been investigated theoretically by performing semi-empirical molecular orbital theory calculations. The geometry of the systems have been optimized and the electronic properties of the systems considered have been calculated by semi-empirical self-consistend-field molecular orbital theory at the level AM1 within UHF formalism in their ground state. Conclusions have been drawn by comparing with experimental results.
Computation of transient thermal stresses in elastic-plastic tubes: Effect of coupling and temperature-dependent physical properties
Eraslan, Ahmet Nedim (2002-06-01)
The objective of this study is to obtain the transient solution of the thermoelastic-plastic deformation of internal heat-generating tubes by considering the thermomechanical coupling effect and the temperature-dependent physical properties of the material. The previously developed steady-state model describing the elastic-plastic behavior of the tubes is modified to obtain the transient solution. The propagation of the elastic-plastic interface for a given heat load is obtained; and the corresponding stres...
Citation Formats
M. H. Somay, “Numerical investigation of dbd in neon:effect of fluid modelling approaches,” M.S. - Master of Science, Middle East Technical University, 2021.