Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Error quantification in crack measurement of building materials using terrestrial laser scanning (tls)
Download
12626016.pdf
Date
2021-4-8
Author
Oytun, Mert
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
628
views
282
downloads
Cite This
Cracks are the most common and crucial indicators giving clues about the as-is condition of structures. Moreover,they have always been a major concern for public safety, as they are pioneers that point to issues in buildings and have been sought to be identified and analyzed. Today, the most common way of deformation analysis highly depends on manual inspection methods, mostly criticized for being highly subjective, time-consuming, and error-prone. Accordingly, perpetual improvement has been observed in the building inspection and damage assessment using different tools and methods until today. Nevertheless, in the last decade, 3D Terrestrial Laser Scanners (TLSs) usage in deformation analysis has gained considerable popularity among other remote sensing tools due to its high accuracy and reliability rates. However, the change in scan data quality based on changes in scanning and material settings has limited the use of TLS and has shown the necessity of research on this subject.The main purpose of this research is to compare data sets of various building materials captured with different scan settings of TLS (scanning distance, resolution, and incidence angle) and to evaluate dimensional measurement accuracy in the context of crack detection. In this study,the error quantification in the crack measurement of the three most commonly used building materials (reinforced concrete, wood, and masonry brick) using TLS is performed. The proposed framework includes laboratory experiments, data processing, comparative analyses, and derivation of error estimation equations of scan data quality as a function of scanning distance, crack width, and incidence angle for each material type. The findings contributed to the literature both theoretically and practically by (1) empirically addressing the level of combined effects of the scan settings on scan data quality and (2) providing outcomes that would facilitate the optimization of laser scan planning.
Subject Keywords
Error Quantification
,
Health Monitoring
,
Structural
,
Point Cloud
,
3D Terrestrial Laser Scanning
,
Crack Measurement
URI
https://hdl.handle.net/11511/89740
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Overlapping Lattice Modeling for concrete fracture simulations using sequentially linear analysis
Aydın, Beyazıt Bestami; Tuncay, Kağan; Binici, Barış (Wiley, 2018-04-01)
Modeling concrete fracture is important in order to uncover accurately the sources of distress which lead to the damage or failure of structures. Many different numerical approaches have been used in the past employing either a smeared or a discrete cracking approach. Those models have difficulty in capturing the local nature of cracking, as well as the direction of crack propagation. Lattice modeling and peridynamics (PD) are some of the more recent nonlocal fracture simulation tools which possess advantag...
In situ examination of structural cracks at historic masonry structures by quantitative infrared thermography and ultrasonic testing
Tavukçuoğlu, Ayşe; Grinzato, E. (2010-01-01)
The key concern of the study was the in situ assessment of cracks in historic masonry structures by quantitative IR thermography (QIRT). To better understand the potentials and/or limits of QIRT for that purpose, the non-destructive in situ survey composed of QIRT and ultrasonic testing was conducted on a sixteenth century monument, suffering from structural cracks that had occurred in recent years. Its aim was to discover the thermal behaviour and ultrasonic characteristics of cracks in relation to depth a...
Drift spectra for inelastic shear frames
Etemadi, Ali; Gülkan, Hakkı Polat; Department of Civil Engineering (2015)
In assessing the damage originating from strong ground motions in building frames, it is necessary to identify properly the post-yield hysteresis degrading behavior of structural components that are well correlated with structural response and in turn, with damage. Likewise, structural damage during the ground motion is due to excessive interstory drift ratio; hence more realistic estimation of interstory drift demands has a significant role in the seismic evaluation of frame buildings. Existing approaches ...
Overlapping lattice modeling for concrete fracture simulations using sequentially linear analysis
Aydın, Beyazıt Bestami; Binici, Barış; Tuncay, Kağan; Department of Civil Engineering (2017)
Estimation of the crack location and width in concrete structures is important due to the sustained damage in structures as a result of extreme loads and aging. The location and width of cracks are the most influential parameters for making decisions on the structure service life. Despite significant developments, the computational modelling of concrete fracture initiation and propagation are still challenging tasks. Many different numerical approaches, most of them based on finite element analysis, have be...
Fragility based assessment of lowrise and midrise reinforced concrete frame buildings in Turkey
Ay, Bekir Özer; Erberik, Murat Altuğ; Department of Civil Engineering (2006)
In this study, structural vulnerability of reinforced concrete frame structures by considering the countryspecific characteristics is investigated to manage the earthquake risk and to develop strategies for disaster mitigation. Lowrise and midrise reinforced concrete structures, which constitute approximately 75% of the total building stock in Turkey, are focused in this fragilitybased assessment. The seismic design of 3, 5, 7 and 9story reinforced concrete frame structures are carried out according to the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Oytun, “Error quantification in crack measurement of building materials using terrestrial laser scanning (tls),” M.S. - Master of Science, Middle East Technical University, 2021.