Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The impact of biofuel properties on emissions and performances of a micro gas turbine using combustion vibrations detection
Date
2018-10-01
Author
Allouis, Christophe Gerard
Amoresano, A.
Capasso, R.
Langella, G.
Niola, V
Quaremba, G.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
137
views
0
downloads
Cite This
The use of pure vegetable oils in Micro Gas Turbine can damage the injection system or the combustion chamber causing undesired vibrations. An ideal solution would consist in having an available tool able to forecast and/or follow in real time the vibrational state of the combustion device. The present paper describes tests performed on a low emission Micro Gas Turbine for power generation, fueled with different liquid fuels, including commercial diesel oil and its blends with pure rapeseed oil. A particular attention was paid both on the emissions and on the measurements of the micro vibrational distributions and their correlation under the different fueling conditions using a new signal processing based on a nonlinear method and chaos analysis. We observed that the overall behavior of the MGT fueled with the blends was good, and the emission concentrations of CO, NOx and Total Particle Matter were comparable to the pure diesel oil ones. Moreover, the chaos analysis and the proposed methodology came out as a possible tool for the real-time characterization of the combustion process of the MGT and to individuation of the fuel supplied.
URI
https://hdl.handle.net/11511/89856
Journal
FUEL PROCESSING TECHNOLOGY
DOI
https://doi.org/10.1016/j.fuproc.2018.06.003
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Thermodynamic analysis of plasma-assisted reforming of methane
Maşera, Kemal; Taylan, Onur; Sustainable Environment and Energy Systems (2016-6)
Conventional techniques of syngas production use the exhaust gas of combustion of fossil fuels or feedstock like biomass itself. High temperatures are required for this process. To achieve necessary high temperatures, about 30% of feedstock is used initially. Another disadvantage of these conventional techniques is the tar formation which can damage the system by blocking the equipment. On the other hand, plasma processes are more efficient techniques to convert energy like solar, electrical, etc. int...
The Effects of High Frequency RF Capacitively Coupled Plasma on Tensile Strain and Functional Groups of PAN based Carbon Fiber
Erözbek Güngör, Ümmügül (2014-04-25)
In this study, high frequency (40.68 MHz) RF capacitively coupled discharge was used to modify tensile strain and chemical structure of unsized PAN-based carbon fiber under different RF powers, pure nitrogen gas pressures and exposure times. The plasma parameters were diagnosed by using single and double Impedans Langmuir probe techniques to understand physics of high frequency RF-CCP treatment processes. The power range was P = 50-200 Watt and the pressure range was p ≈ 0.1-0.8 Torr. The measured plasma pa...
The Influence of cooling configuration and tip geometry on gas turbine blade tip leakage flow and heat transfer
Sakaoğlu, Sergen; Kahveci, Harika Senem; Department of Aerospace Engineering (2019)
In gas turbine engines, an increase in the thermal efficiency and power output can be ensured by increasing the turbine inlet temperature. This causes the high-pressure turbine (HPT) blades to be exposed to extremely high temperatures that requires the introduction of cooling flow in order to keep the temperatures within the allowable material limits and to reduce the high thermal loads on the blade. However, cooling flow introduced around the blade tip region affects the blade tip leakage flow and blade tip he...
The effects of Cr addition on the atomic ordering properties of Ni based superalloys
Eriş, Rasim; Mehrabov, Amdulla; Akdeniz, Mahmut Vedat (null; 2016-10-01)
Nickel-based superalloys are used in turbine blades, nuclear reactors and power plants due to their excellent mechanical properties and oxidation-corrosion resistance at high temperatures. The superior properties of Nickelbased superalloys are further improved by alloying element additions which lead to formation of coherently GLVWULEXWHG RUGHUHG Ȗ¶ SUHFLSLWDWHV 1L3$O ZLWKLQ Ȗ 1L matrix. Enhancement of mechanical properties has been attributed to Al-sublattice site occupancy of tertiary DOOR\LQJHOHPHQWV...
Modeling the effect of SCR denox unit on diesel engine performance
Pelen, Pelsu; Kazanç Özerinç, Feyza; Department of Mechanical Engineering (2020)
The design of the internal combustion engines and the aftertreatment systems cannot be considered independently since imposing an aftertreatment equipment into the exhaust system brings extra backpressure which in turn decreases the engine efficiency and increases the fuel consumption and CO2 emission. In the present study, the existing 3D monolith reactor model in COMSOL Multiphysics® applications is modified to account for an SCR deNOx unit having 600 cpsi cell density by using exhaust mass flow rate and ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. G. Allouis, A. Amoresano, R. Capasso, G. Langella, V. Niola, and G. Quaremba, “The impact of biofuel properties on emissions and performances of a micro gas turbine using combustion vibrations detection,”
FUEL PROCESSING TECHNOLOGY
, pp. 10–16, 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89856.