Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental characterization of a pressure swirl spray by analyzing the half cone angle fluctuation
Date
2018-06-01
Author
Amoresano, A.
Allouis, Christophe Gerard
Di Santo, M.
Iodice, P.
Quaremba, G.
Niola, V
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
184
views
0
downloads
Cite This
Pressure swirl sprays are frequently used in burners for gas turbines like the LPP chamber or to generate diffusion flames. Combustion between fuel and the air is governed by complex phenomena determined by the mixing of the mass flow rate of the two phases liquid and gaseous. Characterization of the spray by measuring the half cone angle fluctuations with a speed camera and a Lagrangian approach allows the working space of the spray to be defined and the "signature" of the spray in well-defined conditions of supply pressure to be identified. The results define the pseudo-chaotic structure of the spray and highlight behavior affecting the combustion process.
URI
https://hdl.handle.net/11511/89857
Journal
EXPERIMENTAL THERMAL AND FLUID SCIENCE
DOI
https://doi.org/10.1016/j.expthermflusci.2018.02.014
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF RADIAL-RADIAL SWIRLERS UNDER DIFFERENT CONFINEMENT CONDITIONS
Kıyıcı, Fırat; Perçin, Mustafa; Department of Aerospace Engineering (2022-7-27)
In modern gas turbine combustors, flame stabilization is achieved by use of swirlers which introduce swirl component to the flow field. Swirlers are inherently sensitive to flow and environmental conditions, and even a minor geometrical modification can change the flow field remarkably. One of the critical parameters that affect the performance of the swirler is the channel orientation of the swirler channels. In the literature, the channel orientation has been mostly investigated at constant confinement ra...
Simulation of a non-premixed swirl burner
Solmaz, Mehmet Burak; Uzol, Oğuz; Uslu, Sıtkı; Department of Aerospace Engineering (2014)
Flame stabilizing in a gas turbine combustion chamber is one of the designing issues. Non-premixed swirling flames are commonly applied to aerial vehicles’ combustors due to their advantages in flame stabilizing and flame length shortening. However, swirling flows are very complex and hard to simulate even without reaction. Previous studies have showed that Large Eddy Simulation (LES) is able to predict swirling flow with a good degree of accuracy. On the other, it is quite expensive and is still far away f...
Experimental and numerical analysis of dry forward combustion with diverse well configuration
Akın, Serhat; Kök, Mustafa Verşan (2002-07-01)
In situ combustion is a thermal recovery technique where energy is generated by a combustion front that is propagated along the reservoir by air injection. Most of the previously conducted studies report thermal and fluid dynamics aspects of the process. Modeling in situ combustion process requires extensive knowledge of reservoir data as well as reaction kinetics data. Unfortunately, limited kinetic data are available on the rates and the nature of partial oxidation reactions and the high-temperature combu...
Experimental and computational investigation of the emergency coolant injection effect in a candu inlet header
Turhan, K. Zafer; Yeşin, Ahmet Orhan; Department of Mechanical Engineering (2009)
Inlet headers in the primary heat transport system(PHTS) of CANDU type reactors, are used to collect the coolant coming from the steam generators and distribute them into the reactor core via several feeders. During a postulated loss of coolant accident (LOCA), depressurization and vapor supplement into the core may occur, which results a deterioration in the heat transfer from fuel to the coolant. When a depressurization occurs, “Emergency Coolant Injection(ECI)” system in the PHTS in CANDU reactors, is au...
Experimental investigation of a pressure swirl atomizer spry
Marchione, T.; Allouis, Christophe Gerard; Amoresano, A.; Beretta, F. (2007-09-01)
The fuel injector has an important role in the process for an efficient combustion because it increases the specific surface area of the fuel and it allows one to reach high rates of mixing and evaporation. This paper has focused on the behavior of kerosene Jet A-1 spray produced by commercial pressure swirl atomizers in terms of mean diameter distributions, velocity component profiles, and cone angle variations over time. The analysis has been carried out experimentally with the aid of a phase-Doppler anem...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Amoresano, C. G. Allouis, M. Di Santo, P. Iodice, G. Quaremba, and V. Niola, “Experimental characterization of a pressure swirl spray by analyzing the half cone angle fluctuation,”
EXPERIMENTAL THERMAL AND FLUID SCIENCE
, pp. 122–133, 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89857.