Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental and computational investigation of the emergency coolant injection effect in a candu inlet header
Download
index.pdf
Date
2009
Author
Turhan, K. Zafer
Metadata
Show full item record
Item Usage Stats
246
views
101
downloads
Cite This
Inlet headers in the primary heat transport system(PHTS) of CANDU type reactors, are used to collect the coolant coming from the steam generators and distribute them into the reactor core via several feeders. During a postulated loss of coolant accident (LOCA), depressurization and vapor supplement into the core may occur, which results a deterioration in the heat transfer from fuel to the coolant. When a depressurization occurs, “Emergency Coolant Injection(ECI)” system in the PHTS in CANDU reactors, is automatically become active and supply coolant is fed into the reactor core via the inlet header and feeders. . This study is focused on the experimental and computational investigation of the ECI effect during a LOCA in a CANDU inlet header. The experiments were carried out in METU Two-Phase Flow Test Facility which consists of a scaled CANDU inlet header having 5 connected feeders. The same tests were simulated with a one dimensional two-fluid computer code, CATHENA, developed by Atomic Energy of Canada Limited(AECL). The average void fraction and the two phase mass flowrate data measured in the experiments are compared with the results obtained from CATHENA simulation. Although a few mismatched points exist, the results coming from two different studies are mostly matching reasonably. Lack of three-dimensional modeling for headers in CATHENA and experimental errors are thought to be the reasons for these dismatches.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12610476/index.pdf
https://hdl.handle.net/11511/18494
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Numerical and experimental investigation Of two-phase flow distribution through multiple outlets from a horizontal drum
Pezek, Enis; Yeşin, Ahmet Orhan; Department of Mechanical Engineering (2006)
In CANDU reactors, under normal operating conditions, the inlet headers collect and distribute single-phase liquid flow (heavy water) to the fuel cooling channels via the feeders. However, under some postulated loss of coolant accidents, the inlet headers may receive two-phase fluid (steam/water) and the fluid forms a stratified region inside the header. To predict the thermalhydraulic behaviour of headers for the reactor safety analysis, the two-phase flow distribution within the headers and through the fe...
Analysis of regenerative cooling ın liquid propellant rocket engines
Boysan, Mustafa Emre; Ulaş, Abdullah; Department of Mechanical Engineering (2008)
High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. For high-pressure and high-thrust rocket engines, regenerative cooling is the most preferred cooling method. In regenerative cooling, a coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Traditionally, approximately square cross sectional channels have been used. However, recent studies have shown ...
Validation of MISES Two-Dimensional Boundary Layer Code for High-Pressure Turbine Aerodynamic Design
ANDREW, PHILIP; Kahveci, Harika Senem (ASME International, 2009-07-01)
Avoiding aerodynamic separation and excessive shock losses in gas turbine turbomachinery components can reduce fuel usage and thus reduce operating cost. In order to achieve this, blading designs should be made robust to a wide range of operating conditions. Consequently, a design tool is needed-one that can be executed quickly for each of many operating conditions and on each of several design sections, which will accurately capture loss, turning, and loading. This paper presents the validation of a bounda...
An electronic control unit design for a miniature jet engine
Polat, Cuma; Dölen, Melik; Department of Mechanical Engineering (2010)
Gas turbines are widely used as power sources in many industrial and transportation applications. This kind of engine is the most preferred prime movers in aircrafts, power plants and some marine vehicles. They have different configurations according to their mechanical constructions such as turbo-prop, turbo-shaft, turbojet, etc. These engines have different efficiencies and specifications and some advantages and disadvantages compared to Otto-Cycle engines. In this thesis, a small turbojet engine is inves...
Experimental study of solid propellant combustion instability
Çekiç, Ayça; Ulaş, Abdullah; Department of Mechanical Engineering (2005)
In this study, experimental investigation of solid propellant combustion instability using an end burning T-Burner setup is performed. For this purpose, a T-Burner setup is designed, analyzed, constructed and tested with all its sub components. T-Burner setup constructed is mainly composed of a base part, a control panel and the T-Burner itself. Combustion chamber, pressure stabilization mechanism, pressurization system, measurement instruments and data acquisition systems form the T-Burner. Pressure stabil...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Z. Turhan, “Experimental and computational investigation of the emergency coolant injection effect in a candu inlet header,” M.S. - Master of Science, Middle East Technical University, 2009.