Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Factors Influencing Imazapyr Herbicide Removal from Wastewater Using Photocatalytic Ozonation
Date
2018-01-01
Author
Bougarrani, Salma
El Azzouzi, Laila
Akel, Soukaina
Latrach, Lahbib
Bouzıanı, Asmae
El Azzouzi, Mohammed
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
99
views
0
downloads
Cite This
This study investigates the degradation of imazapyr herbicide from wastewater by photocatalytic ozonation using TiO2 as a semiconductor. Effects of operational parameters on imazapyr removal efficiency including TiO2 dosing, initial herbicide concentration and pH were also studied. Obtained results showed that more than 90% of removal efficiency representing the disappearance of imazapyr was maintained until 7 mu M in the presence of 200 mgL(-1) of UV100-TiO2. Otherwise, the degradation of imazapyr followed the first-order kinetics with a photocatalytic rate constant of 0.247 min(-1), and complete degradation was achieved within 20 min using photocatalytic ozonation for 5 mu M of Imazapyr at pH 7.
URI
https://hdl.handle.net/11511/89859
Journal
ACTA CHIMICA SLOVENICA
DOI
https://doi.org/10.17344/acsi.2018.4297
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Factors affecting the longterm stability of biomass and hydrogen productivity in outdoor photofermentation
Androga, Dominic Deo; Ozgur, Ebru; Guncluz, Ufuk; Yucel, Meral; Eroğlu, İnci (Elsevier BV, 2011-08-01)
In this study, the long-term stability of biomass and hydrogen production on acetate by Rhodobacter capsulatus YO3 (hup(-)) was investigated. The experiments were performed in fed-batch panel photobioreactors operated under the natural sunlight in Ankara, Turkey. They were carried out between October and December in order to resemble low temperature and low light intensity and between July and August in order to resemble high temperature and high light intensity.
Impact of different environmental conditions on the aggregation of biogenic U(IV) nanoparticles synthesized by Desulfovibrio alaskensis G20
Şengör, Sema Sevinç; Dohnalkova, Alice; Spycher, Nicolas; Ginn, Timothy R.; Peyton, Brent M.; Sani, Rajesh K. (2016-12-01)
This study investigates the impact of specific environmental conditions on the formation of colloidal U(IV) nanoparticles by the sulfate reducing bacteria (SRB, Desulfovibrio alaskensis G20). The reduction of soluble U(VI) to less soluble U(IV) was quantitatively investigated under growth and non-growth conditions in bicarbonate or 1,4-piperazinediethanesulfonic acid (PIPES) buffered environments. The results showed that under non-growth conditions, the majority of the reduced U nanoparticles aggregated and...
Effects of reactor geometry on dissociating CO2 and electrode degradation in a MHCD plasma reactor
Taylan, Onur; Pinero, Daniel; Berberoğlu, Halil (2018-08-01)
This paper reports an experimental study on the effects of reactor geometry for dissociating carbon dioxide using a microhollow cathode discharge (MHCD) reactor, and the associated electrode degradation. A MHCD reactor consists of two hollow metal electrodes that are separated by dielectric material. The geometric reactor parameters studied were the dielectric material thickness and the diameter of the reactor hole. Dielectric thicknesses of 150, 300 and 450 mu m and discharge hole diameters of 200, 400 and...
Synthesis of an arginine-functionalized polyaniline@FeOOH composite with high removal performance of hexavalent chromium ions from water: Adsorption behavior, regeneration and process capability studies
Hsini, Abdelghani; Benafqir, Mohamed; Naciri, Yassine; Laabd, Mohamed; Bouzıanı, Asmae; Ez-zahery, Mohamed; Lakhmiri, Rajae; Alem, Noureddine El; Albourine, Abdallah (2021-05-20)
In this study, the synthesis of a novel arginine-functionalized polyaniline/FeOOH (Arg-PANI@FeOOH) composite for hazardous Hexavalent chromium ions (Cr(VI)) removal from wastewater was reported. The SEM, EDS, FTIR, XRD, and PZC measurements were used to characterize the as-developed Arg-PANI@FeOOH composite. Batch adsorption experiments were used to investigate the influence of pH, temperature, contact time, Arg-PANI@FeOOH amount, initial Cr(VI) concentration and coexisting ions on the efficiency of Cr(VI) ...
Effects of nanoclays on the flammability of polystyrene with triphenyl phosphate-based flame retardants
Kaynak, Cevdet (SAGE Publications, 2013-07-01)
The main purpose of this study is to investigate the effects of nanoclays on the flammability behavior of neat polystyrene and polystyrene compounded with traditional flame retardants triphenyl phosphate and its synergist melamine cyanurate. Nanocomposites were prepared via ultrasound-assisted solution intercalation technique. Dispersion and nanomorphology of nanoclays were investigated through X-ray diffraction analysis and transmission electron microscopy. Thermal stability and flammability behaviors were...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Bougarrani, L. El Azzouzi, S. Akel, L. Latrach, A. Bouzıanı, and M. El Azzouzi, “Factors Influencing Imazapyr Herbicide Removal from Wastewater Using Photocatalytic Ozonation,”
ACTA CHIMICA SLOVENICA
, pp. 470–474, 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89859.