Heat transfer in ultra-high temperature advanced ceramics under high enthalpy arc-jet conditions

2015-12-01
Cecere, Anselmo
Savino, Raffaele
Allouis, Christophe Gerard
Monteverde, Frederic
Aim of this work is to analyze the response of an ultra-high temperature ceramic at typical heat flux conditions of thermal protection systems of a re-entry spacecraft. In particular, a ZrB2-SiC based ultra-high temperature advanced ceramic sharp leading edge demonstrator (1 mm nominal radius of curvature) was manufactured and tested in a non-equilibrium high enthalpy supersonic airflow, 20 MJ/kg of peak total enthalpy, by using an arc-jet ground facility. The surface temperature of the leading edge was monitored by infrared thermo-cameras coupled to a two-color pyrometer. The ultra-refractory advanced ceramic leading edge withstood stressful thermo-chemical loads successfully, without obvious failure. Ad-hoc computational fluid dynamics simulations rebuilt the adopted set-up and related experiment conditions: the numerical outputs matched fairly well the experimental in-situ determinations. (C) 2015 Elsevier Ltd. All rights reserved.
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

Suggestions

Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine-Part I: Experimental Configuration and Data Review With Inlet Temperature Profile Effects
Kahveci, Harika Senem; MATHISON, RANDALL; DUNN, MICHAEL (2013-03-01)
This paper investigates the vane airfoil and inner endwall heat transfer for a full-scale turbine stage operating at design corrected conditions under the influence of different vane inlet temperature profiles and vane cooling flow rates. The turbine stage is a modern 3D design consisting of a cooled high-pressure vane, an un-cooled high-pressure rotor, and a low-pressure vane. Inlet temperature profiles (uniform, radial, and hot streaks) are created by a passive heat exchanger and can be made circumferenti...
Heat Transfer for the Film Cooled Vane of a 1 1 2 Stage High Pressure Transonic Turbine Part I Experimental Configuration and Data Review With Inlet Temperature Profile Effects
Kahveci, Harika Senem; MATHISON, RANDALL; DUNN, MICHAEL (2011-01-01)
This paper investigates the vane airfoil and inner endwall heat transfer for a full-scale turbine stage operating at design corrected conditions under the influence of different vane inlet temperature profiles and vane cooling flow rates. The turbine stage is a modern 3-D design consisting of a cooled high-pressure vane, an un-cooled high-pressure rotor, and a low-pressure vane. Inlet temperature profiles (uniform, radial and hot streaks) are created by a passive heat exchanger and can be made circumferenti...
Heat transfer enhancement by silver nanowire suspensions in microchannel heat sinks
SIMSEK, Eylul; Coskun, Sahin; OKUTUCU-OZYURT, Tuba; Ünalan, Hüsnü Emrah (2018-01-01)
Convection heat transfer and pressure drop characteristics of water based silver nanowire suspensions flowing through CMOS compatible monolithic microchannel heat sinks are investigated experimentally. Three different rectangular channels of 200 mu m x 50 mu m, 100 mu m x 50 mu m and 70 mu m x 50 mu m cross sectional area are used during the experiments. The stability of the silver nanofluids is established by the added polyvinylpyrrolidone (PVP) as the surfactant. To investigate the potential heat transfer...
Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine-Part II: Effect of Cooling Variation on the Vane Airfoil and Inner End Wall
Kahveci, Harika Senem; MATHISON, RANDALL; DUNN, MICHAEL (2013-03-01)
The impact of film cooling on heat transfer is investigated for the high-pressure vane of a 1-1/2 stage high-pressure turbine operating at design corrected conditions. Cooling is supplied through three independently controllable circuits to holes in the inner and outer end wall, vane leading edge showerhead, and the pressure and suction surfaces of the airfoil, in addition to vane trailing edge slots. Four different overall cooling flow rates are investigated and one cooling circuit is varied independently....
HEAT TRANSFER ENHANCEMENT IN LAMINAR CONVECTIVE HEAT TRANSFER WITH NANOFLUIDS
Özerinç, Sezer; YAZICIOGLU, A. G. (2011-06-03)
In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experimental data available in the literature, and it is shown that this approach underestim...
Citation Formats
A. Cecere, R. Savino, C. G. Allouis, and F. Monteverde, “Heat transfer in ultra-high temperature advanced ceramics under high enthalpy arc-jet conditions,” INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, pp. 747–755, 2015, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89866.