Multigrid methods for the solutions of vector equations

Uçar, Uğur Salih


Multigrid methods for optimal control problems governed by convection-diffusion equations
Arslantaş, Özgün Murat; Karasözen, Bülent; Yücel, Hamdullah; Department of Scientific Computing (2015)
Linear-quadratic optimal control problems governed by partial differential equations proved themselves important through their use in many real life applications. In order to solve the large scale linear system of equations that results from optimality conditions of the optimization problem, efficient solvers are required. For this purpose, multigrid methods, with an ordering technique to deal with the dominating convection, can be good candidates. This thesis investigates an application of the multigrid me...
Multisymplectic box schemes for the complex modified Korteweg-de Vries equation
AYDIN, AYHAN; Karasözen, Bülent (2010-08-01)
In this paper, two multisymplectic integrators, an eight-point Preissman box scheme and a narrow box scheme, are considered for numerical integration of the complex modified Korteweg-de Vries equation. Energy and momentum preservation of both schemes and their dispersive properties are investigated. The performance of both methods is demonstrated through numerical tests on several solitary wave solutions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3456068]
Multistep methods for differential/algebraic equations.
Uzuner, Şennur; Department of Mathematics (1985)
Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation
AYDIN, AYHAN; Karasözen, Bülent (2008-09-20)
In this paper, the multisymplectic formulation of the CMKdV(complex modified Korteweg-de Vries equation) is derived. Based on the multisymplectic formulation, the eight-point multisymplectic Preissman scheme and a linear-nonlinear multisymplectic splitting scheme are developed. Both methods are compared numerically with respect to the conservation of local and global quantities of the CMKdV equation.
Multiresolution analysis of S&P500 time series
KILIC, Deniz Kenan; Uğur, Ömür (2018-01-01)
Time series analysis is an essential research area for those who are dealing with scientific and engineering problems. The main objective, in general, is to understand the underlying characteristics of selected time series by using the time as well as the frequency domain analysis. Then one can make a prediction for desired system to forecast ahead from the past observations. Time series modeling, frequency domain and some other descriptive statistical data analyses are the primary subjects of this study: i...
Citation Formats
U. S. Uçar, “Multigrid methods for the solutions of vector equations,” Middle East Technical University, 1992.