Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ENHANCED PHOTOCURRENT IN MIXED HALIDE TREAT ED QUANTUM DOT SOLAR CELLS
Date
2021-04-12
Author
Hacıefendioğlu, Tuğba
Asil Alptekin, Demet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
225
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/89911
Conference Name
4th International Conference on Physical Chemistry & Functional Materials
Collections
Department of Chemistry, Conference / Seminar
Suggestions
OpenMETU
Core
Enhanced photocurrent in PbSe nanorod-quantum dot bulk nano-heterojunction solar cells
Hacıefendioğlu, Tuğba; Balıkoğlu, Bensu; Aydın, Firdevs; Kolay, İrem; Öztürk, İbrahim; Asil, Demet (2021-01-01)
Owing to their remarkable multiple exciton generation (MEG) yield, PbSe nanorods (NRs) have been considered as one of the most promising materials to overcome the Shockley–Queisser limit. Unfortunately, assessing the direct role of the PbSe NRs in solar cell designs has been challenging due to their unoptimized film microstructure and poor performances. Here we devise a cell architecture that overcomes these limitations by inserting an electron blocking quantum dot (QD) layer to the NR/metal interface. Furt...
Enhanced endothelization on nanostructured 316L stainless steel for cardiovascular stent application
Erdoğan, Yaşar Kemal; Ercan, Batur (2021-12-31)
Enhanced Sintering of TiNi Shape Memory Foams under Mg Vapor Atmosphere
Aydoğmuş, Tarık; Bor, Sakir (2012-12-01)
TiNi alloy foams are promising candidates for biomaterials to be used as artificial orthopedic implant materials for bone replacement applications in biomedical sector. However, certain problems exist in their processing routes, such as formation of unwanted secondary intermetallic phases leading to brittleness and deterioration of shape memory and superelasticity characteristics; and the contamination during processing resulting in oxides and carbonitrides which affect mechanical properties negatively. Mor...
Enhanced Optical Absorption and Spectral Photocurrent in a-Si:H by Single- and Double-Layer Silver Plasmonic Interfaces
Saleh, Zaki M.; NASSER, Hisham; ÖZKOL, Engin; GÜNÖVEN, Mete; ALTUNTAS, Burcu; Bek, Alpan; Turan, Raşit (2014-04-01)
Single and double plasmonic interfaces consisting of silver nanoparticles embedded in media with different dielectric constants including SiO2, SiNx, and Al:ZnO have been fabricated by a self-assembled dewetting technique and integrated to amorphous silicon films. Single plasmonic interfaces exhibit plasmonic resonances whose frequency is red-shifted with increasing particle size and with the thickness of a dielectric spacer layer. Double plasmonic interfaces consisting of two different particle sizes exhib...
Enhanced metal assisted etching method for high aspect ratio microstructures: Applications in silicon micropillar array solar cells
Baytemir, Gulsen; Çiftpınar, Emine Hande; Turan, Raşit (Elsevier BV, 2019-12-01)
A solar cell device, fabricated on high density array cylindrical pillars, enables photogenerated carrier collection in the radial direction, thus shortening the path length of the carriers reaching the junction. It also provides advantages over conventional planar junction solar cells, such as reduced surface reflectance and enhanced light trapping. In this study, highly ordered Si micropillars were fabricated by photolithography and metal assisted etching (MAE) methods. It is shown that the use of ethanol...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Hacıefendioğlu and D. Asil Alptekin, “ENHANCED PHOTOCURRENT IN MIXED HALIDE TREAT ED QUANTUM DOT SOLAR CELLS,” presented at the 4th International Conference on Physical Chemistry & Functional Materials, Elazığ, Türkiye, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89911.