Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Biochar Reduced Cadmium Uptake and Enhanced Wheat Productivity in Alkaline Contaminated Soil
Date
2020-01-01
Author
Ijaz, Muhammad
Rizwan, Muhammad Shahid
Sarfraz, Muhammad
Ul-Allah, Sami
Sher, Ahmad
Sattar, Abdul
Ali, Liaqat
Ditta, Allah
Yousaf, Balal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
180
views
0
downloads
Cite This
Cadmium (Cd) is a toxic heavy metal present in the environment which causes severe environmental, nutritional, and ecological losses. A pot incubation study was conducted to assess the role of biochar derived from various organic feedstock's [poultry manure (PM), farmyard manure (FYM) and sugarcane press mud (PS)] and dosages (0, 2.5 and 5 g kg(-1) soil of each) to immobilize Cd (5 mg kg(-1)) in Cd polluted soil. Moreover, impact of applied biochar to reduce the bioavailability of Cd in wheat tissues and to improve wheat growth and yield was also observed. Among all type of applied biochar, application of farmyard manure (FYM) derived biochar improved tillers population (77%), chlorophyll SPAD value (74%), plant height (69), grains yield (77%) and biological yield (82%) of wheat. Moreover, FYM derived biochar lowered the Cd uptake and its translocation from roots (71-92%) shoots (82-92%), and grains (90-96%) as compared with control. While in Cd-contaminated soil without biochar application, the Cd concentration in roots, shoots and grains were 1.4, 1.14 and 0.9 mg kg(-1) of dry matter, respectively. Overall, FYM derived biochar, applied at 5 g kg(-1) of soil performed better in reducing the Cd toxicities in soil (0.12 mg kg(-1)) and wheat roots (0.13 mg kg(-1)), shoots (0.1 mg kg(-1) ) and grains (0.03 mg kg(-1)) along with higher wheat yield in Cd polluted soil. In conclusion, FYM derived biochar has the potential to remediate Cd toxicities in alkaline polluted soil. (C) 2020 Friends Science Publishers
URI
https://hdl.handle.net/11511/89939
Journal
INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY
DOI
https://doi.org/10.17957/ijab/15.1605
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
Biogas production from broiler manure, wastewater treatment plant sludge, and greenhouse waste by anaerobic co-digestion
Sarikaya, E.; Demirer, Göksel Niyazi (2013-07-01)
Inappropriate management of organic wastes can cause serious damage to the environment by polluting water and air, which can lower the quality of life. Ammonia and greenhouse gases (CH4 and CO2) emitted from the waste storage units can pollute the air. Inappropriate application of nitrogen and phosphorus on fields as manure can lead to eutrophication of surface water resources and pollution of soil and ground water. Conversion of the organic wastes to biogas through anaerobic digestion will, however, reduce...
Molecular adaptations in cadmium and lead resistant environmental species
Kepenek, Eda Şeyma; Gözen, Ayşe Gül; Severcan, Feride; Department of Biology (2017)
Environmental pollution caused by heavy metal exposure has detrimental effects on human health. For the reclamation of polluted areas, bacteria have been used in remediation. For those bioremediation attempts, finding the appropriate bacterial strains is an important issue. In their environment, bacteria may exist close to the source of heavy metals. Sudden exposure to high concentrations of the heavy metal may trigger quick response mechanisms to ensure survival. On the other hand, bacteria may live at a d...
Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review
Imtiaz, Muhammad; Rizwan, Muhammad Shahid; Mushtaq, Muhammad Adnan; Ashraf, Muhammad; Shahzad, Sher Muhammad; Yousaf, Balal; Saeed, Dawood Anser; Rizwan, Muhammad; Nawaz, Muhammad Azher; Mehmood, Sajid; Tu, Shuxin (2016-12-01)
Recently, heavy metals pollution due to industrialization and urbanization, use of untreated wastewater and unreasonable use of pesticides and fertilizers is increasing rapidly, resulting in major threat to the environment and contaminate soils. Silicon (Si) is the second most abundant element in the earth crust after oxygen. Although it's higher accumulation in plants, yet Si has not been listed as essential nutrient however, considered as beneficial element for growth of plants particularly in stressed en...
Evaluation of Performance of Arsenic Bioreporter Immobilized Electrospun Membranes for Arsenic Detection in Water
Arık Kınalı, Nehir; Öktem, Hüseyin Avni; Tezcaner, Ayşen; Department of Molecular Biology and Genetics (2022-12-9)
Heavy metal pollution, which is growing and threatening the health of all living things as well as human health, can lead to serious lifelong consequences. It is very important to detect and monitor these heavy metals that cause environmental pollution. In addition to traditional laboratory techniques, the use of bacterial biosensors to detect heavy metals has come into focus. In addition, it is known that the immobilization of these bacterial biosensors is more advantageous in many respects, such as being ...
Environmental emission, fate and transformation of microplastics in biotic and abiotic compartments: Global status, recent advances and future perspectives
Ali, Muhammad Ubaid; Lin, Siyi; Yousaf, Balal; Abbas, Qumber; Munir, Mehr Ahmed Mujtaba; Ali, Muhammad Uzair; Rasihd, Audil; Zheng, Chunmiao; Kuang, Xingxing; Wong, Ming Hung (2021-10-15)
The intensive use and wide-ranging application of plastic- and plastic-derived products have resulted in alarming levels of plastic pollution in different environmental compartments worldwide. As a result of various biogeochemical mechanisms, this plastic litter is converted into small, ubiquitous and persistent fragments called microplastics (<5 mm), which are of significant and increasing concern to the scientific community. Microplastics have spread across the globe and now exist in virtually all environ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Ijaz et al., “Biochar Reduced Cadmium Uptake and Enhanced Wheat Productivity in Alkaline Contaminated Soil,”
INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY
, pp. 1633–1640, 2020, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/89939.