Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Amendment for increased methane production rate in municipal solid waste landfill gas collection systems
Date
2021-06-01
Author
Larson, Steven L.
Martin, William A.
Şengör, Sema Sevinç
Wade, Roy
Altamimi, Faris
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
196
views
0
downloads
Cite This
Optimization of methane production rate can potentially decrease the operational lifetime of the landfill site and assist with better management of methane harvesting from the landfill cells. Increased moisture content in landfill cells is known to increase the rate of methane production. Several natural biopolymers can sustain moisture content in a solid matrix while providing a scaffolding for microbial communities to grow. This research examined the effect of the biopolymer, produced by Rhizobium tropici, on bench-scale methane generation from municipal solid waste. The addition of the R. tropici biopolymer increased the rate of methane production from 27% to 78% when compared to the control study for low and high concentrations of biopolymer amendment, respectively. R. tropici biopolymer shortened the lag phase by up to six days over the control, depending on the level of biopolymer amendment added to the solid waste. The mechanism appears to be facilitating biofilm formation through the combination of increased moisture retention and surface modification of the solid waste. Incorporation of biopolymer amendment in the alternative daily cover activities at commercial landfills could provide a viable approach for full scale application. Published by Elsevier B.V.
Subject Keywords
Biopolymer
,
Biofilm
,
Methane
,
Optimized
,
Moisture retention
URI
https://hdl.handle.net/11511/90024
Journal
SCIENCE OF THE TOTAL ENVIRONMENT
DOI
https://doi.org/10.1016/j.scitotenv.2021.145574
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
START-UP STRATEGIES FOR ENHANCED METHANE PRODUCTION FROM CATTLE MANURE IN BIOELECTROCHEMICAL SYSTEMS
Ghaderikia, Amin; Yılmazel, Yasemin Dilşad; Department of Environmental Engineering (2022-12-22)
Bioelectrochemical methane production, known as electromethanogenesis, provides an emerging technology for carbon recycling via the conversion of carbon dioxide to methane with the additional benefit of simultaneous organic waste reduction. Bioelectrochemical conversion reactions in an electromethanogenic microbial electrolysis cell (MEC) are catalyzed by electro-active biofilm on the electrodes; hence, biofilm formation has a key role in system performance. In this study, the objective was to evaluate the ...
Start-up strategies of electromethanogenic reactors for methane production from cattle manure
Ghaderikia, Amin; Taşkın, Bilgin; Yılmazel Tokel, Yasemin Dilşad (2023-03-15)
This study qualitatively assessed the impacts of different start-up strategies on the performance of methane (CH4) production from cattle manure (CM) in electromethanogenic reactors. Single chamber MECs were operated with an applied voltage of 0.7 V and the impact of electrode acclimatization with a simple substrate, acetate (ACE) vs a complex waste, CM, was compared. Upon biofilm formation on the sole carbon source (ACE or CM), several MECs (ACE_CM and CM_ACE) were subjected to cross-feeding (switching sub...
A preliminary study on the use of reservoir simulation and coal mine ventilation methane measurements in determining coal reservoir properties
Erdoğan, Sinem Setenay; Okandan, Ender; Kracan, Cevat Özgen; Department of Petroleum and Natural Gas Engineering (2011)
This thesis investigates methane emissions and methane production potentials from abandoned longwall panels produced or emitted due to mining activities either from coal seam or any underlying or overlying formations. These emissions can increase greenhouse gas concentrations and also pose a danger to the underground working environment and to miners. In addition to the safety issues, recovery and utilization of this gas is an additional source of energy. In this study, methane concentrations measured from ...
Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix
Liu, Ruijia; Liu, Guijian; Yousaf, Balal; Niu, Zhiyuan; Abbas, Qumber (2022-01-01)
Biomass, as a renewable and sustainable energy resource, can be converted into environmentally friendly and practically valuable biofuels and chemical materials via pyrolysis. However, the process optimization and pyrolysis efficiency are restricted by the limited perception of the complicated mechanisms and kinetics for biomass pyrolysis. Here, to establish an in-depth mechanism model for biomass pyrolysis, we presented a novel investigation for the thermal evolutions and pyrolysis kinetics of the function...
Modeling natural attenuation of petroleum hydrocarbons (btex) in heterogeneous aquifers
Uçankuş, Tuğba; Ünlü, Kahraman; Department of Environmental Engineering (2005)
Natural Attenuation can be an effective cleanup option for remediation of Groundwater contamination by BTEX. One of the important aspects of the methodology that has been recognized recently is that mass removal rates, the most important parameters used to determine effectiveness of the methodology, is controlled by groundwater flow regime, which to a large extent controlled by aquifer heterogeneity. Considering this recognition, the primary objective of this research is to quantitatively describe the relat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. L. Larson, W. A. Martin, S. S. Şengör, R. Wade, and F. Altamimi, “Amendment for increased methane production rate in municipal solid waste landfill gas collection systems,”
SCIENCE OF THE TOTAL ENVIRONMENT
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90024.