Human body reconstruction from limited number of points

2021-04-01
Tastan, Oguzhan
Sahillioğlu, Yusuf
We propose a novel approach for reconstructing plausible three-dimensional (3D) human body models from small number of 3D points which represent body parts. We leverage a database of 3D models of humans varying from each other by physical attributes such as age, gender, weight, and height. First we divide the bodies in database into seven semantic regions. Then, for each input region consisting of maximum 40 points, we search the database for the best matching body part. For the matching criterion, we use the distance between novel point-based features of input points and body parts in the database. We then combine the matched parts from different bodies into one body, with the help of Laplacian deformation, which results in a plausible human body. To evaluate our results objectively, we pick points from each part of the ground-truth human body models, then reconstruct them using our method and compare the resulting bodies with the corresponding ground-truths. Also, our results are compared with registration-based results. In addition, we run our algorithm with noisy data to test the robustness of our method and run it with input points whose body parts are manually edited, which produces plausible human bodies that do not even exist in our database. Our experiments verify qualitatively and quantitatively that the proposed approach reconstructs human bodies with different physical attributes from a small number of points using a small database.
COMPUTER ANIMATION AND VIRTUAL WORLDS

Suggestions

Frankenstein3d: human body reconstruction from limited number of points
Taştan, Oğuzhan; Sahillioğlu, Yusuf; Department of Computer Engineering (2019)
We propose a novel approach for reconstructing high-resolution 3D human body models from extremely small number of 3D points which represent body parts. We leverage a database of high-resolution 3D models of 100 humans varying from each other by physical attributes such as age, weight, size etc. We, first, divide the bodies in database into seven semantic regions. Then, for each input region consisting of maximum 40 points, we search the database for the best matching body part. For the matching criterion, ...
Anatomical and Dynamic Volume Spline Model Applied to Facial Soft Tissue
Ulusoy, İlkay; Yırcı, Murat (2014-01-01)
Biomechanical modeling of soft tissue is a complex problem for achieving realistic surgical simulations, surgical planning, and scientific analysis. In the literature, three categories of biomechanical models: spline based models, spring models, and finite element models (FEMs) are mainly used for dealing with this problem. Among these, spline based models offer relatively fast and realistic soft tissue simulations by utilizing both the spring and FEMs. In this paper, a new dynamic volume spline model for h...
Self-Supervised Learning of 3D Human Pose using Multi-view Geometry
Kocabas, Muhammed; Karagoz, Salih; Akbaş, Emre (2019-01-01)
Training accurate 3D human pose estimators requires large amount of 3D ground-truth data which is costly to collect. Various weakly or self supervised pose estimation methods have been proposed due to lack of 3D data. Nevertheless, these methods, in addition to 2D ground-truth poses, require either additional supervision in various forms (e.g. unpaired 3D ground truth data, a small subset of labels) or the camera parameters in multiview settings. To address these problems, we present EpipolarPose, a self-su...
3D indirect shape retrieval based on hand interaction
Irmak, Erdem Can; Sahillioğlu, Yusuf (Springer Science and Business Media LLC, 2020-01-01)
In this work, we present a novel 3D indirect shape analysis method which successfully retrieves 3D shapes based on hand-object interaction. To this end, the human hand information is first transferred to the virtual environment by the Leap Motion controller. Position-, angle- and intersection-based novel features of the hand and fingers are used for this part. In the guidance of these features that define the way humans grab objects, a support vector machine (SVM) classifier is trained. Experiments validate...
Human-like robot head design
Ölçücüoğlu, Orhan; Koku, Ahmet Buğra; Department of Mechanical Engineering (2007)
In the thesis study, it is intended to design and manufacture an anthropomorphic robot head that can resemble human head/neck and eye movements. The designed robot head consists of a 4-DOF neck and a 4-DOF head. The head is composed of 3-DOF eyes and 1-DOF jaw. This work focuses on the head/neck and eyes therefore; the other free to move parts such as eyebrows, eyelids, ears etc. are not implemented. The general kinematic human modeling technique can be applied to facilitate the humanoid robotics design pro...
Citation Formats
O. Tastan and Y. Sahillioğlu, “Human body reconstruction from limited number of points,” COMPUTER ANIMATION AND VIRTUAL WORLDS, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/90357.