Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
TMVP-Friendly Primes for Efficient Elliptic Curve Cryptography
Date
2020-12-03
Author
Taskin, Halil Kemal
Cenk, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
309
views
0
downloads
Cite This
The need for faster and practical cryptography is a research topic for decades. In case of elliptic curve cryptography, which was proposed by Koblitz and Miller in 1985 as a more efficient alternative to RSA, the applications in real life started after 2000s. Today, most of the popular applications and protocols like Whatsapp, Signal, iOS, Android, TLS, SSH, Bitcoin etc. make use of Elliptic curve cryptography. One of the important factor for high performance elliptic curve cryptography is the finite field multiplication. In this paper, we first describe how to choose proper prime fields that makes use of Topelitz-matrices to get faster field multiplication, then we give parameter choice details to select prime fields that supports Toeplitz-matrix vector product operations. Then, we introduce the safe curve selection rationale and discuss about security. We propose new curves, discuss implementation and benchmark results and conclude our work.
Subject Keywords
Elliptic curve cryptography
,
Montgomery curves
,
Toeplitz-matrix vector product
,
Finite field multiplication
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101072325&origin=inward
https://hdl.handle.net/11511/90391
DOI
https://doi.org/10.1109/iscturkey51113.2020.9307999
Conference Name
13th International Conference on Information Security and Cryptology, ISCTURKEY 2020
Collections
Graduate School of Applied Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Efficient implementation of TMVP-based prime field multiplication and its applications to ECC
Taşkın, Halil Kemal; Cenk, Murat; Department of Cryptography (2019)
The need for faster and practical cryptography is a research topic for decades. For elliptic curve cryptography, which is proposed independently by Koblitz and Miller in 1985 as a more efficient alternative to RSA, the applications of it in real life started after 2000s. Today, most of the popular applications and protocols like Whatsapp, Signal, iOS, Android, TLS, SSH, Bitcoin etc. make use of elliptic curve cryptography. In this thesis, we present a new representation of finite field multiplication which ...
NEW TMVP-BASED MULTIPLICATION ALGORITHMS FOR POLYNOMIAL QUOTIENT RINGS AND APPLICATION TO POST-QUANTUM CRYPTOGRAPHY
Keskinkurt Paksoy, İrem; Cenk, Murat; Department of Cryptography (2022-7-28)
One of the quantum-safe cryptography research areas is lattice-based cryptography. Most lattice-based schemes need efficient algorithms for multiplication in polynomial quotient rings. The fastest algorithm known for multiplication is the Number Theoretic Transform (NTT), which requires certain restrictions on the parameters of the ring, such as prime modulus. Direct NTT application is not an option for some schemes that do not comply with these restrictions, e.g., the two finalists of the PQC standardizati...
Analyzes of Block Recombination and Lazy Interpolation Methods and Their Applications to Saber
Aksoy, Berkin; Cenk, Murat; Department of Cryptography (2022-2-28)
Since the beginning of the National Institute of Standards and Technology (NIST), The Post-Quantum Cryptography (PQC) Standardization Process, efficient implementations of lattice-based algorithms have been studied extensively. Lattice-based NIST PQC finalists use polynomial or matrix-vector multiplications on the ring with type {Z}_{q}[x] / f(x). For convenient ring types, Number Theoretic Transform (NTT) can be used to perform multiplications as done in Crystals-KYBER among the finalists of the NIST PQC S...
Related-key attacks on block ciphers
Darbuka, Aslı; Doğanaksoy, Ali; Department of Cryptography (2009)
One of the most important cryptographic primitives is the concept of block ciphers which yields confidentiality for data transmission in communication. Therefore, to be sure that confidentiality is provided, it is necessary to analyse the security of block ciphers by investigating their resistance to existing attacks. For this reason, related-key attacks gain much popularity in recent years and have been applied to many block ciphers with weak key schedules. In this work, our main motivation is to cover typ...
Mutual correlation of NIST statistical randomness tests and comparison of their sensitivities on transformed sequences
Doğanaksoy, Ali; Uğuz, Muhiddin; Akcengiz, Ziya (2017-01-01)
Random sequences are widely used in many cryptographic applications and hence their generation is one of the main research areas in cryptography. Statistical randomness tests are introduced to detect the weaknesses or nonrandom characteristics that a sequence under consideration may have. In the literature, there exist various statistical randomness tests and test suites, defined as a collection of tests. An efficient test suite should consist of a number of uncorrelated statistical tests each of which meas...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. K. Taskin and M. Cenk, “TMVP-Friendly Primes for Efficient Elliptic Curve Cryptography,” presented at the 13th International Conference on Information Security and Cryptology, ISCTURKEY 2020, Virtual, Ankara, Türkiye, 2020, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101072325&origin=inward.