Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fractional statistics and superconductivity of anyons
Download
023293.pdf
Date
1992
Author
Shikakhwa, Mohammad
Metadata
Show full item record
Item Usage Stats
76
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/9056
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Fractional Allen Cahn Equations
Yücel, Hamdullah; Benner, Peter (null; 2015-06-26)
Fractional Governing Equations of Diffusion Wave and Kinematic Wave Open-Channel Flow in Fractional Time-Space. II. Numerical Simulations
Ercan, Ali; Kavvas, M. Levent (2015-09-01)
In this study, finite difference numerical methods, first order accurate in time and second order accurate in space, are proposed to solve the governing equations of the one-dimensional unsteady kinematic and diffusion wave open-channel flow processes in fractional time and fractional space, which were derived in the accompanying paper. Advantages of modeling open-channel flow in a fractional time-space framework over integer time-space framework are threefold. First, the nonlocal phenomena in the open-chan...
Fractional Governing Equations of Diffusion Wave and Kinematic Wave Open-Channel Flow in Fractional Time-Space. I. Development of the Equations
Kavvas, M. L.; Ercan, Ali (2015-09-01)
In this study the fractional governing equations for diffusion wave and kinematic wave approximations to unsteady open-channel flow in prismatic channels in fractional time-space were developed. The governing fractional equations were developed from the mass and motion conservation equations in order to provide a physical basis to these equations. A fractional form of the resistance formula for open-channel flow was also developed. Detailed dimensional analyses of the derived equations were then performed i...
Fractional incompressible stars
Bayin, Selcuk S.; Krisch, Jean P. (2015-10-01)
In this paper we investigate the fractional versions of the stellar structure equations for non radiating spherical objects. Using incompressible fluids as a comparison, we develop models for constant density Newtonian objects with fractional mass distributions and/or stress conditions. To better understand the fractional effects, we discuss effective values for the density and equation of state. The fractional objects are smaller and less massive than integer models. The fractional parameters are related t...
Fractional Ensemble Average Governing Equations of Transport by Time-Space Nonstationary Stochastic Fractional Advective Velocity and Fractional Dispersion. II: Numerical Investigation
Kim, Sangdan; Kavvas, M. L.; Ercan, Ali (2015-02-01)
In this paper, the second in a series of two, the theory developed in the companion paper is applied to transport by stationary and nonstationary stochastic advective flow fields. A numerical solution method is presented for the resulting fractional ensemble average transport equation (fEATE), which describes the evolution of the ensemble average contaminant concentration (EACC). The derived fEATE is evaluated for three different forms: (1) purely advective form of fEATE, (2) moment form of the fractional e...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Shikakhwa, “Fractional statistics and superconductivity of anyons,” Middle East Technical University, 1992.