Commuting graph of A-orbits

Gilloglu, Ismail S.
Ercan, Gülin
Let A be a finite group acting by automorphisms on the finite group G. We introduce the commuting graph Gamma(G, A) of this action and study some questions related to the structure of G under certain graph theoretical conditions on Gamma(G, A).


Asymptotic integration of second-order impulsive differential equations
Akgol, S. D.; Zafer, Ağacık (2018-02-01)
We initiate a study of the asymptotic integration problem for second-order nonlinear impulsive differential equations. It is shown that there exist solutions asymptotic to solutions of an associated linear homogeneous impulsive differential equation as in the case for equations without impulse effects. We introduce a new constructive method that can easily be applied to similar problems. An illustrative example is also given.
Approximate Analytical Solutions for the Weight Optimization Problems of CI and ICI
Orguner, Umut (2017-10-12)
Approximate analytical formulae are proposed for the solutions of the weight optimization problems involved in Covariance Intersection (CI) and Inverse Covariance Intersection (ICI). The methodology used for obtaining the analytic approximations boils down to using just two Newton iterations with the initial weight value 1/2. The simulation results show that quite acceptable root-mean-square (RMS) error levels are achievable with the proposed approximate analytical weights with less computations compared to...
Fully computable convergence analysis of discontinous Galerkin finite element approximation with an arbitrary number of levels of hanging nodes
Özışık, Sevtap; Kaya Merdan, Songül; Riviere, Beatrice M.; Department of Mathematics (2012)
In this thesis, we analyze an adaptive discontinuous finite element method for symmetric second order linear elliptic operators. Moreover, we obtain a fully computable convergence analysis on the broken energy seminorm in first order symmetric interior penalty discontin- uous Galerkin finite element approximations of this problem. The method is formulated on nonconforming meshes made of triangular elements with first order polynomial in two di- mension. We use an estimator which is completely free of unknow...
Discrete linear Hamiltonian systems: Lyapunov type inequalities, stability and disconjugacy criteria
Zafer, Ağacık (2012-12-15)
In this paper, we first establish new Lyapunov type inequalities for discrete planar linear Hamiltonian systems. Next, by making use of the inequalities, we derive stability and disconjugacy criteria. Stability criteria are obtained with the help of the Floquet theory, so the system is assumed to be periodic in that case.
Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Moller-Plesset perturbation theory
Bozkaya, Ugur; Turney, Justin M.; Yamaguchi, Yukio; Schaefer, Henry F.; Sherrill, C. David (2011-09-14)
Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order Moller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply "OD" and "OMP2" for short), respectively. We also present an improved algorithm for orbital optimization in these methods. Explicit equations for response density ...
Citation Formats
I. S. Gilloglu and G. Ercan, “Commuting graph of A-orbits,” JOURNAL OF GROUP THEORY, pp. 573–586, 2021, Accessed: 00, 2021. [Online]. Available: