Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
In situ synthesis of micro-plastics embedded sewage-sludge co-pyrolyzed biochar: Implications for the remediation of Cr and Pb availability and enzymatic activities from the contaminated soil
Date
2021-06-15
Author
Mujtaba Munir, Mehr Ahmed
Yousaf, Balal
Ali, Muhammad Ubaid
Dan, Chen
Abbas, Qumber
Arif, Muhammad
Yang, Xiaoe
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
241
views
0
downloads
Cite This
Careful designing of biochar (BC) employing biological and industrial waste materials has gained much attention to improve soil health via reducing the bioavailability of heavy metals (HMs) in the contaminated-soil. Herein, a forty-day pot experiment was conducted to explore the influence of micro-plastic (MP) embedded sewage-sludge (SS). The effects of SS and MP dosage ratios (0–15%) on the physicochemical properties of the modified-biochars were also studied with slow-pyrolyzed (SBC-500 °C) and flash-pyrolyzed biochar (FSBC-700 °C). Our investigations found remarkable positive synergistic effects for the SBC-15% involving increased soil pH, CEC, high carbon contents, and alleviation in Cr and Pb leaching than control and FSBC-700 °C. Besides, SBC-15% containing high carbon functional groups can effectively mitigate the Cr and Pb availability stress by intensifying the adsorption or passivation in the amended-soil, thereby, significantly reducing the Cr and Pb EDTA-extractable contents. Chemical fractionation analyses further confirmed that SBC-15% addition was more helpful for Cr and Pb immobilization and ultimately reducing transfer-rate, bioconcentration-factor, and translocation-factor as compared to FSBC-15% and control due to its higher alkalinity, surface area/porosity, and available carbon functional groups. The maize biomass (root and shoot) increased by more than 50%, and the activities of soil enzymes such as urease, alkaline phosphatase, and glucosidase enzyme activities were also enhanced. This ecologically feasible strategy would pave an efficient way to make full use of the SS and MP for the biochar synthesis with excellent soil remediation performance.
Subject Keywords
Heavy metals
,
Microplastic
,
Modified-biochar
,
Spectroscopic investigation
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104104175&origin=inward
https://hdl.handle.net/11511/90731
Journal
Journal of Cleaner Production
DOI
https://doi.org/10.1016/j.jclepro.2021.127005
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
Interactive assessment of lignite and bamboo-biochar for geochemical speciation, modulation and uptake of Cu and other heavy metals in the copper mine tailing
Munir, Mehr Ahmed Mujtaba; Irshad, Samina; Yousaf, Balal; Ali, Muhammad Ubaid; Dan, Chen; Abbas, Qumber; Liu, Guijian; Yang, Xiaoe (2021-07-20)
This study was designed to examine the combined effect of bamboo-biochar (BC) and water-washed lignite (LGT) at copper mine tailings (CuMT) sites on the concentration of Cu and other metals in pore water (PW), their bioavailability, and change in geochemical speciation. Rapeseed (first cropping-season) and wheat (second cropping-season) were grown for 40-days each and the influence of applied-amendments on both cropping seasons was observed and compared. A significant increase in pH, water holding capacity ...
Assessing the influence of sewage sludge and derived-biochar in immobilization and transformation of heavy metals in polluted soil: Impact on intracellular free radical formation in maize
Rashid, Muhammad Saqib; Liu, Guijian; Yousaf, Balal; Hamid, Yasir; Rehman, Abdul; Munir, Mehr Ahmed Mujtaba; Arif, Muhammad; Ahmed, Rafay; Song, Yu (2022-09-15)
© 2022 Elsevier LtdAs one of the most common ways to get rid of municipal waste, landfill leachate, waste with complicated compositions and high levels of contaminants, has become a significant threat to the world's environment. Here, the impact of sewage sludge (SS) and derived-biochar (SSB) amendments on the immobilization and potential mobility of heavy metals in a contaminated soil-plant system was investigated. The sequential fractionation findings showed that using SS-2%, SSB-2%, and SSBC-1% reduced t...
Effectiveness of anaerobic biomass in adsorbing heavy metals
Haytoglu, B; Demirer, Göksel Niyazi; Yetiş, Ülkü (2001-01-01)
This study focuses on the effectiveness of waste anaerobic dead biomass (AIDE) in adsorbing heavy metals, namely Pb(II), Cr(VI), Cu(II), Ni(II) and Zn(II). The metal uptake capacity of ADB was investigated and compared with the values for various biomass types from the literature. The biomass, which was grown under laboratory conditions using a synthetic wastewater, was used throughout the study after sterilization. The maximum metal adsorptive capacities were evaluated by running isotherm tests at 25 degre...
Biological treatment and nanofiltration of denim textile wastewater for reuse
ŞAHİNKAYA, Erkan; UZAL, Nigmet; Yetiş, Ülkü; Dilek, Filiz Bengü (2008-05-30)
This study aims at coupling of activated sludge treatment with nanofiltration to improve denim textile wastewater quality to reuse criteria. In the activated sludge reactor, the COD removal efficiency was quite high as it was 91 +/- 2% and 84 +/- 4% on the basis of total and soluble feed COD, respectively. The color removal efficiency was 75 +/- 10%, and around 50-70% of removed color was adsorbed on biomass or precipitated within the reactor. The high conductivity of the wastewater, as high as 8 mS/cm, did...
Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil
Munir, Mehr Ahmed Mujtaba; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Ullah, Habib (2020-02-01)
In the paper, hydrothermally (HT) treated, sulfuric acid (H2SO4), and hydrochloric acid (HCI) washed fly ashes (FA) were used to examine the applied effects with and without biochar (BC) on the bioavailability of heavy metals (HMs) and growth of maize (Zea mays L) plants in coal -mining contaminated soil. Addition of BC in combination with these processed fly ashes (PFA) significantly increased the soil pH, EC, and soil organic carbon (SOC). Individual application of BC and PFA increased the available conte...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. A. Mujtaba Munir et al., “In situ synthesis of micro-plastics embedded sewage-sludge co-pyrolyzed biochar: Implications for the remediation of Cr and Pb availability and enzymatic activities from the contaminated soil,”
Journal of Cleaner Production
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104104175&origin=inward.