Switched reluctance motors and drive systems for electric vehicle powertrains: State of the art analysis and future trends

2021-04-02
Lan, Yuanfeng
Benomar, Yassine
Deepak, Kritika
AKSÖZ, AHMET
Baghdadi, Mohamed El
Bostancı, Emine
Hegazy, Omar
This paper presents a detailed literature review on switched reluctance motor (SRM) and drive systems in electric vehicle (EV) powertrains. SRMs have received increasing attention for EV applications owing to their reliable structure, fault tolerance ability and magnet free design. The main drawbacks of the SRM are torque ripple, low power density, low power factor and small extended speed range. Recent research shows that multi-stack conventional switched reluctance motors (MSCSRM) and multi-stack switched reluctance motors with a segmental rotor (MSSRM-SR) are promising alternative solutions to reduce torque ripples, increase torque density and increase power factor. Different winding configurations such as single-layer concentrated winding (SLC), single layer mutually coupled winding (SLMC), double layer concentrated winding (DLC), double layer mutually coupled winding (DLMC) and fully-pitched winding (FP) are introduced in the literature in recent years to increase average torque and to decrease torque ripples. This research analyzes winding methods and structure of the SRMs, including conventional and segmental rotors. They have been compared and assessed in detail evaluation of torque ripple reduction, torque/power density increase, noise/vibration characteristics and mechanical structure. In addition, various drive systems are fully addressed for the SRMs, including conventional drives, soft-switching drives, drives with standard inverters and drives with an integrated battery charger. In this paper, the SRM control methods are also reviewed and classified. These control methods include strategies of torque ripple reduction, fault-diagnosis, fault-tolerance techniques and sensorless control. The key contributions of this paper provide a useful basis for detailed analysis of modeling and electromechanical design, drive systems, and control techniques of the SRMs for EV applications.
Energies

Suggestions

Effects of control parameters on SRM performance: A parametric search
Bizkevelci, E.; Özlü Ertan, Hatice Gülçin; Leblebicioğlu, Mehmet Kemal (2007-09-12)
This paper investigates the effects of the SRM control parameters on torque ripple and efficiency. The average shaft torque, torque ripple and the torque per ampere variation of the motor are observed at different turn-on and conduction angles. The study is performed using simulation software developed by the authors. Some experimental results are presented which indicate that the software promises to be accurate. The findings of the study are presented to give an idea about the optimum switching strategy t...
Energy and Time Optimal Autopilot for Electric Vehicles Performing Ackerman Cornering
Ahiska, Kenan; Özgören, Mustafa Kemal; Leblebicioğlu, Mehmet Kemal (2022-03-01)
This paper studies energy and time optimality of electric vehicles during constant Ackerman steering along a quad-circle, and proposes an autopilot assimilating the optimal results. The energy and time optimal solutions satisfying the steering and battery limitations are generated and a Pareto-front analysis is carried out with multi-objective optimization using NSGA-II algorithm. In the autopilot design, the indicators for the energy and time optimality performances are merged in a vehicle status vector. A...
Performance Calculation of SR Motors for Optimum Design and a Washing Machine Application
Ertan, Hulusi Bülent (2008-09-09)
This paper aims to develop an approach for performance calculation of an SR motor, which is suitable for use within mathematical design optimization. For this reason the requirement is to develop procedures, which are both accurate and fast. The procedures adopted here rely on flux-linkage-current-position curves of the motor. A series of tests are carried out on a test motor. The results are compared with estimations from the developed algorithms. It is shown that the current waveform, torque-speed curve, ...
ELECTRIC DRIVE FOR FLYWHEEL ENERGY-STORAGE
TRIPATHY, SC (Elsevier BV, 1994-02-01)
This paper presents the results of experimental work on flywheel energy storage systems for city buses. An efficient electronic hardware scheme is used to start the flywheel and traction machines. This scheme has been designed, fabricated and tested in our laboratory. A low frequency a.c. has been derived from an inverter fed from a three-phase uncontrolled rectifier to start the commutatorless d.c. motors. Commutation is achieved by using a capacitor and two auxiliary thyristors, whose ratings could be a f...
Energy Optimal Controller for Electric Vehicles on Partially Icy Roads with Heuristic Skidding Compensation
Ahiska, Kenan; Özgören, Mustafa Kemal; Leblebicioğlu, Mehmet Kemal (2015-10-16)
In this study, a mathematical model is constructed for an electric vehicle. An energy optimal controller is designed for the gross motion model of the vehicle moving on a positive constant slope road with some icy parts. The energy optimal controller takes torque, speed and battery constraints into account. The loss of control during skidding period is compensated with an additional control command based on heuristics. The compensation is based on an enrichment of applied control input throughout the sectio...
Citation Formats
Y. Lan et al., “Switched reluctance motors and drive systems for electric vehicle powertrains: State of the art analysis and future trends,” Energies, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106256889&origin=inward.