Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multi-fidelity aerodynamic dataset generation of a fighter aircraft
Date
2021-01-01
Author
Kurt, Huseyin Burak
Millidere, Murat
Gomec, Fazıl Selcuk
Uğur, Ömür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
427
views
0
downloads
Cite This
High-fidelity aerodynamic dataset generation is one of the most significant components of the aircraft flight simulation, and, it is a time consuming and costly process. Data fusion techniques suggest that, instead of using high fidelity data for entire aerodynamic dataset, an incorporating combination of high-fidelity and low-fidelity data is a more cost-effective one. The objective of data fusion is to obtain high-fidelity dataset accuracy by combining less amount of high-fidelity dataset and more amount of low-fidelity dataset. In this paper, two different data fusion approaches, namely modified Variable-Complexity Modelling and co-Kriging, are applied to F-16 fighter aircraft. Wind tunnel test data is utilized as the high-fidelity dataset while data obtained by a semi-empirical approach (Digital Datcom) is used as the low-fidelity dataset.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100310882&origin=inward
https://hdl.handle.net/11511/90863
Conference Name
AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
Collections
Graduate School of Applied Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Multidisciplinary and multiobjective design optimization of an unmanned combat aerial vehicle (UCAV)
Çavuş, Nesrin; Tekinalp, Ozan; Department of Aerospace Engineering (2009)
The Multiple Cooling Multi-Objective Simulated Annealing Algorithm is used for the conceptual design optimization of a supersonic Unmanned Combat Aerial Vehicle (UCAV). Single and multiobjective optimization problems are addressed while limiting performance requirements between desired bounds to obtain viable aircraft configurations. A conceptual aircraft design code was prepared for planned but flexible combat missions. The results demonstrate that the optimization technique employed is an effective tool f...
Numerical investigations of lateral jets for missile aerodynamics
Ağsarlıoğlu, Ekin; Albayrak, Kahraman; Department of Mechanical Engineering (2011)
In this thesis, effects of sonic lateral jets on aerodynamics of missiles and missilelike geometries are investigated numerically by commercial Computational Fluid Dynamics (CFD) software FLUENT. The study consists of two parts. In the first part, two generic missile-like geometries with lateral jets, of which experimental data are available in literature, are analyzed by the software for validation studies. As the result of this study, experimental data and CFD results are in good agreement with each other...
Nonlinear modeling and flight control system design of an unmanned aerial vehicle
Karakaş, Deniz; Balkan, Raif Tuna; Department of Mechanical Engineering (2007)
The nonlinear simulation model of an unmanned aerial vehicle (UAV) in MATLAB®/Simulink® environment is developed by taking into consideration all the possible major system components such as actuators, gravity, engine, atmosphere, wind-turbulence models, as well as the aerodynamics components in the 6 DOF equations of motion. Trim and linearization of the developed nonlinear model are accomplished and various related analyses are carried out. The model is validated by comparing with a similar UAV data in te...
Comparison of Various Spring Analogy Mesh Deformation Techniques in 2 D Airfoil Design Optimization
Yang, Yosheph; Özgen, Serkan (null, 2015-06-29)
During the last few decades, CFD (Computational Fluid Dynamics) has developed greatly and has become a more reliable tool for the conceptual phase of aircraft design. This tool is generally combined with an optimization algorithm. In the optimization phase, the need for regenerating the computational mesh might become cumbersome, especially when the number of design parameters is high. For this reason, several mesh generation and deformation techniques have been developed in the past decades. One of the mos...
Dynamic modelling and control of a gimballed airborne antenna platform with mass unbalance and friction
Şeref, Tuğçe; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2018)
Inertial stabilized gimballed systems are widely-used in many applications to achieve a high precision positioning. Airborne antennas pointing target as a part of the satellite communication may be examples of such systems. This thesis presents the dynamic modelling and control of a two axes gimballed airborne antenna platform. First, reference frames and the transformation matrices are defined to build up the motion of the antenna and kinematic equations of each gimbal are derived. Next, the dynamic equati...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. B. Kurt, M. Millidere, F. S. Gomec, and Ö. Uğur, “Multi-fidelity aerodynamic dataset generation of a fighter aircraft,” presented at the AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021, Virtual, Online, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100310882&origin=inward.