Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Improvement of structural characteristics of composite thin-walled beams using variable stiffness concept via curvilinear fiber placement
Date
2021-01-01
Author
Farsadi, Touraj
Bozkurt, Mirac Onur
Çöker, Demirkan
Kayran, Altan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
193
views
0
downloads
Cite This
This study presents the use of variable stiffness concept via curvilinear fiber placement to achieve improved structural characteristics in composite thin-walled beams (TWBs). The TWB used in the study is constructed in circumferentially asymmetric stiffness (CAS) configuration. The variation of fiber angles along the span and the width of the TWB is included by defining two fiber path functions. A parametric study is performed to investigate the effects of different fiber paths on the structural performance metrics including frequency spacing, unit twist, and critical buckling load. For this purpose, a semi-analytical solution method is developed to conduct free vibration, deformation, and buckling analyses of the TWB with curvilinear fibers. The semi-analytical method is validated with several finite element (FE) analyses performed using ABAQUS. Elastic stress analyses of TWBs with selected fiber paths subjected to simplified distributed loading are also conducted using the FE method, and a ply failure criterion is applied to evaluate the strength of these TWBs. Overall results show that curvilinear fiber placement varied along the span leads to greater structural performance for a composite TWB than the straight fiber configuration.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102454039&origin=inward
https://hdl.handle.net/11511/90867
Journal
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
DOI
https://doi.org/10.1177/0954410020988240
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Improving the strength of additively manufactured objects via modified interior structure
Al, Can Mert; Yaman, Ulaş; Department of Mechanical Engineering (2018)
This thesis study provides an approach to improve the durability of additively manufactured parts via modified interior structures by considering the stress field results from tensile loading conditions. In other words, the study provides an automated method, i.e., implicit slicing method, which improves the strength of the parts with infill structures modified according to the quasi-static Finite Element Analysis (FEA) results under tensile loadings, automatically. The parts which are used throughout the w...
Improving the strength of additively manufactured objects via modified interior structure
AL, Can Mert; Yaman, Ulaş (2017-04-28)
This thesis study provides an approach to improve the durability of additively manufactured parts via modified interior structures by considering the stress field results from tensile loading conditions. In other words, the study provides an automated method, i.e., implicit slicing method, which improves the strength of the parts with infill structures modified according to the quasi-static Finite Element Analysis (FEA) results under tensile loadings, automatically. The parts which are used throughout the w...
Investigation of variations in performance properties of asphalt concrete using image-based finite element model
Karakaya, Yalçın; Güler, Murat; Department of Civil Engineering (2022-7-20)
The objective of this study is to evaluate variations in performance properties of asphalt concrete using a two-dimensional image-based finite element model. Two different asphalt mixtures are used in both laboratory tests and in FEM analyses representing different conditions. A flatbed scanner is then used to capture cross-sectional images of the samples and various image processing techniques are applied to prepare the images for FEM. A unique image vectorization method has been developed to transform cro...
Improving the performance of simulated annealing in structural optimization
Hasançebi, Oğuzhan; Saka, Mehmet Polat (2010-03-01)
This study aims at improving the performance of simulated annealing (SA) search technique in real-size structural optimization applications with practical design considerations. It is noted that a standard SA algorithm usually fails to produce acceptable solutions to such problems associated with its poor convergence characteristics and incongruity with theoretical considerations. In the paper novel approaches are developed and incorporated into the standard SA algorithm to eliminate the observed drawbacks ...
Importance of Degrading Behavior for Seismic Performance Evaluation of Simple Structural Systems
Erberik, Murat Altuğ (Informa UK Limited, 2011-01-01)
This study focuses on effect of degradation characteristics on seismic performance of simple structural systems. Equivalent single degree of freedom systems are used for which the structural characteristics are taken from existing reinforced concrete (RC) frame buildings. Simulation of degrading behavior is achieved by considering actual experimental data. To obtain the seismic response of degrading structural systems, two different approaches are used: inelastic spectral analysis and fragility analysis. Ac...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Farsadi, M. O. Bozkurt, D. Çöker, and A. Kayran, “Improvement of structural characteristics of composite thin-walled beams using variable stiffness concept via curvilinear fiber placement,”
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85102454039&origin=inward.