Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Al-Sm Alloys Under Far-From-Equilibrium Conditions
Date
2021-01-01
Author
Kaygusuz, Burçin
Okuyucu, Can
Işıksaçan, Cemil
Meydanoğlu, Onur
Motallebzadeh, Amir
Özerinç, Sezer
Kalay, Yunus Eren
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
281
views
0
downloads
Cite This
Traditional Al alloys have shown tremendous potential in the aerospace industry due to their attractive properties such as ductility, fracture toughness, and fatigue resistance. However, modern aerospace applications call for next-generation Al alloys with a stringent combination of properties such as high strength, low density, and excellent environmental stability. In that sense, we studied highly driven Al-Rare-Earth (RE) alloys under far-from-equilibrium conditions to investigate the possible effects of cooling rate on the expected microstructure, thus mechanical properties. Al94Sm6 was produced using a copper wheel melt spinner. XRD analysis showed the Sm is entirely trapped within the Al matrix. The heat-treated specimens resulted in the formation of the nanocrystalline Al4Sm phase embedded in the Al matrix, with a two-step precipitation sequence. The hardness values determined by nanoindentation shows that the initial supersaturated solid solution has 3.83 GPa hardness, while the heat-treated ones have 3.34 GPa. The mechanisms behind this extreme strength and ductility through solute trapping, and subsequent heat-treatments were discussed in detail using a combined study of micromechanical characterization, nanoindentation, electron microscopy, XRD, and DSC.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104376037&origin=inward
https://hdl.handle.net/11511/90923
DOI
https://doi.org/10.1007/978-3-030-65396-5_13
Conference Name
Light Metals Symposium held at the TMS Annual Meeting and Exhibition, 2021
Collections
Department of Metallurgical and Materials Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
MECHANICAL PROPERTIES OF REPAIRED CARBON FIBER REINFORCED POLYMER COMPOSITES
Sonat, Emine Evren; Özerinç, Sezer; Department of Mechanical Engineering (2021-12-10)
Carbon fiber reinforced polymer (CFRP) composites are increasingly used in the aerospace industry due to their high specific strength compared to conventional metallic materials. However, a significant shortcoming of these composites is their increased susceptibility to damage. Structural repair is a common method to restore the load-carrying capacity of a damaged part when the damage size exceeds the pre-defined tolerances. Scarf and stepped bonded repair methods are the primary choice for cases that requi...
Investigating the effects of hardening of aluminium alloys on equal-channel angular pressing-A finite-element study
Karpuz, P.; Simsir, C.; Gür, Cemil Hakan (Elsevier BV, 2009-03-15)
Equal-channel angular pressing (ECAP) is a promising severe plastic deformation method for production of ultrafine-grained bulk metals and alloys with considerably improved mechanical properties. In this study, numerical experiments were carried out to investigate the effect of strain hardening of aluminum alloys on the process performance of ECAP via finite element modeling. In the constitutive model, isothermal-plane strain, frictionless condition was assumed. The numerical results showed that strain hard...
Damage Progression in Thick Curved Composite Laminates under Static and Fatigue Loading
Tasdemir, B.; Çöker, Demirkan (IOP Publishing; 2018-06-22)
In this study, damage behavior of curved carbon fiber reinforced polymer (CFRP) composite laminates that are important sub-structures (ribs, shear webs and spar flanges etc.) for wind turbine blades are investigated under static and fatigue loading conditions. Cross-ply curved specimen consisting of groups of three 0 degrees and 90 degrees layers is used for clear observation of the matrix cracking in thicker plies. Damage mechanisms and locations under static and fatigue loadings are examined. In the exper...
Fatigue Cracking of Hybrid Plasma Gas Metal Arc Welded 2205 Duplex Stainless Steel
Yurtışık, Koray; Tirkeş, Süha (2014-01-01)
Contrary to other keyhole welding applications on duplex stainless steels, a proper cooling time and a dilution were achieved during hybrid plasma gas metal arc welding that provided sufficient reconstructive transformation of austenite without sacrificing its high efficiency and productivity. Simultaneous utilization of keyhole and metal deposition in the hybrid welding procedure enabled us to get an as-welded 11 mm-thick standard duplex stainless steel plate in a single pass. Me examination on hybrid plas...
Nanowires assembled from iron manganite nanoparticles: Synthesis, characterization, and investigation of electrocatalytic properties for water oxidation reaction
Çetin, Asude; Önal, Ahmet Muhtar; Nalbant Esentürk, Emren (Cambridge University Press (CUP), 2019-09-30)
The development of stable and effective earth-abundant metal oxide electrocatalysts is very crucial to improve competence of water electrolysis. In this study, iron manganite (FeMnO3) nanomaterials were synthesized as an affordable electrocatalyst for water oxidation reactions. The structural and chemical properties of FeMnO3 nanomaterials were studied by transmission electron microscopy, scanning electron microscopy, energydispersive X-ray, X-ray diffraction, X-ray photoelectron spectroscopy, inductively c...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Kaygusuz et al., “Al-Sm Alloys Under Far-From-Equilibrium Conditions,” Pennsylvania, Amerika Birleşik Devletleri, 2021, vol. 6, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85104376037&origin=inward.