Damage Progression in Thick Curved Composite Laminates under Static and Fatigue Loading

2018-06-22
Tasdemir, B.
Çöker, Demirkan
In this study, damage behavior of curved carbon fiber reinforced polymer (CFRP) composite laminates that are important sub-structures (ribs, shear webs and spar flanges etc.) for wind turbine blades are investigated under static and fatigue loading conditions. Cross-ply curved specimen consisting of groups of three 0 degrees and 90 degrees layers is used for clear observation of the matrix cracking in thicker plies. Damage mechanisms and locations under static and fatigue loadings are examined. In the experiments, failure is found to initiate in the first group of 90 degrees layers under static loading while it is found to occur in the second group of 90 degrees layers under fatigue loading. The overall goal of the project is to contribute to development of design techniques or local reinforcement methods to increase fatigue life and durability of these curved sub-structures used in wind turbine blades.

Suggestions

Ice Accretion Prediction on Wind Turbines and Consequent Power Losses
YIRTICI, ÖZCAN; Tuncer, İsmail Hakkı; Özgen, Serkan (2016-10-07)
Ice accretion on wind turbine blades modifies the sectional profiles and causes alteration in the aerodynamic characteristic of the blades. The objective of this study is to determine performance losses on wind turbines due to the formation of ice in cold climate regions and mountainous areas where wind energy resources are found. In this study, the Blade Element Momentum method is employed together with an ice accretion prediction tool in order to estimate the ice build-up on wind turbine blades and the en...
Process characterization of composite structures manufactured using resin impregnation techniques
Miskbay, Adem Onur; Parnas, Kemal Levend; Department of Mechanical Engineering (2009)
The aim of this study is to investigate and compare the properties of two layer carbon epoxy composite plates manufactured using various resin impregnation techniques; Resin Transfer Molding (RTM), Light RTM (LRTM), Vacuum Assisted RTM (VARTM) and Vacuum Packaging (VP). Throughout the study a different packaging method was developed and named Modified Vacuum Packaging (BP). The mechanical properties of composite plates manufactured are examined by tensile tests, compressive tests, in-plane shear tests and t...
Transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites
Şen, Özge; Turhan, Doğan; Department of Engineering Sciences (2005)
In this study, transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites is investigated. Thermal effects, in addition to mechanical effects, are taken into consideration. A generalized thermoelasticity theory which incorporates the temperature rate among the constitutive variables and is referred to as temperature-rate dependent thermoelasticity theory is employed. This theory predicts finite heat propagation speeds. The body considered in this thesis consists o...
FREE-VIBRATION ANALYSIS OF LAMINATED COMPOSITE TRUNCATED CIRCULAR CONICAL SHELLS
Kayran, Altan (1990-07-01)
An analysis is presented for the free vibration characteristics of isotropic and laminated composite truncated circular conical shells including transverse shear deformation. All components of translatory and rotatory inertia are included. The applicability of linear shell theory due to Reissner is assumed, and governing equations are solved for the natural frequencies and mode shapes by using a combination of modal iteration and transfer matrix approach for different boundary conditions. Natural frequencie...
Analysis and design of helicopter rotor blades for reduced vibrational level
Tamer, Aykut; Yaman, Yavuz; Department of Aerospace Engineering (2011)
In this thesis analysis and design of helicopter rotor blades were discussed for reduced vibrational level. For this purpose an optimization procedure was developed which involves coupling of the comprehensive rotorcraft analysis tool CAMRAD JA and the gradient based optimization algorithm. The main goal was to achieve favorable blade structural dynamics characteristics that would lead to reduction in vibrational level. For this purpose blade stiffness and mass distributions were considered as the design va...
Citation Formats
B. Tasdemir and D. Çöker, “Damage Progression in Thick Curved Composite Laminates under Static and Fatigue Loading,” 2018, vol. 1037, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39528.