Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Manufacturing of Functionally Graded Porous Products by Selective Laser Sintering
Date
2008-09-25
Author
Erdal Erdoğmuş, Merve
Dağ, Serkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
242
views
0
downloads
Cite This
Selective laser sintering (SLS) is a rapid prototyping technique which is used to manufacture plastic and metal models. The porosity of the final product obtained by SLS can be controlled by changing the energy density level used during the manufacturing process. The energy density level is itself dependent upon manufacturing parameters such as laser power, hatching distance and scanning speed. Through mechanical characterization techniques, it is possible to quantitatively relate the energy density levels to particular strength values. The present study is directed towards manufacturing functionally graded polyamide products by changing the energy density level in a predetermined manner. The mechanical properties of the functionally graded components are characterized by means of tensile testing. Both homogeneous and functionally graded specimens are produced and tested in order to examine the influence of the energy density level on the mechanical response and on the ultimate tensile and rupture strengths. Selective laser sintering is shown to possess the potential to produce functionally graded porous specimens with controlled variations in physical and mechanical properties.
Subject Keywords
Selective laser sintering
,
Tensile testing
,
Layered manufacturing
,
Porosity
URI
https://hdl.handle.net/11511/40726
DOI
https://doi.org/10.4028/www.scientific.net/msf.631-632.253
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Optimization of the mechanical properties of Ti-6Al-4V alloy produced by three dimensional additive manufacturing using termochemical processes
Bilgin, Güney Mert; Durucan, Caner; Esen, Ziya; Department of Metallurgical and Materials Engineering (2017)
Selective laser melting (SLM) is an additive manufacturing (AM) technology used for aerospace and biomedical Ti-6Al-4V alloys to produce parts with complex geometry at one step with reduced production time, scrap and cost. However, parts produced by SLM are lack of ductility due to microstructures similar to those cast products and residual stresses generated during laser processing. In this study, Ti6Al-4V alloys produced by SLM were treated by thermo-hydrogen process (THP) to increase ductility and to ref...
High Temperature Mechanical Properties of Ceramic Dispersoid Reinforced 17-4 PH Stainless Steel Produced by Selective Laser Melting
Özsoy, Andaç; Dericioğlu, Arcan Fehmi; Aydoğan Güngör, Eda; Department of Metallurgical and Materials Engineering (2021-9-08)
Selective Laser Melting (SLM) is a metal additive manufacturing process used to produce complex-shaped parts by the fusion of metal powders by a laser heat source. SLM processing of metals offers various advantages such as freedom of design, part consolidation, fast prototyping, weight reduction etc. Stainless steels have been one of the first choices to be implemented in SLM processing. Among these, 17-4 PH stainless steel holds a sweet spot with its corrosion resistance, weldability and high strength at e...
Degradation of poly(carbonate urethane) by gamma irradiation
Ozdemir, T.; Usanmaz, Ali (Elsevier BV, 2007-06-01)
Poly(carbonate urethane) (PCU), is a valuable commercial engineering polymer. In order to understand the possible use of PCU in radioactive waste management as a solidifying agent or as a disposal container, radiation stability of the PCU is studied by Co-60 gamma irradiations at two different dose rates of 1540 and 82.8 Gy/h. The total dose of irradiation was up to 6.24 MGy. Degradation nature was tested by studying the changes in mechanical and thermal properties with rate and total dose of irradiation. U...
Characterization of novel materials for fused filament fabrication
AL-DUAIS, ABDULLAH ABDULRAHMAN NAJI; Özerinç, Sezer; Kazanç Özerinç, Feyza; Department of Mechanical Engineering (2021-6-24)
Fused filament fabrication (FFF) is a polymer additive manufacturing technology that is suitable for a wide range of applications due to its low cost and ease of use. This thesis investigated two types of novel materials for FFF use. First, a foaming PLA filament is considered and the mechanical properties of 3D printed specimens using this filament is characterized. The results show that the strength, modulus and density of the foaming PLA can be tuned over a wide range of values by varying FFF process par...
Computer modelling of residual stress & distortion for additively manufactured metal parts
Polat, Yusuf Alptuğ; Şimşir, Caner; Yasa, Evren; Department of Metallurgical and Materials Engineering (2022-11-28)
Selective Laser Melting is a promising manufacturing technique which has been developed significantly in recent years. Additive nature of the process and selective fusion of metal powders enables manufacturing of complex geometries with minimum material wastege. However, residual stress formation during build stage of Selective Laser Melting process have negative effect on part mechanical properties and service life. Existence of residual stresses may lead to crack formation, part distortion and may reduce ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Erdal Erdoğmuş and S. Dağ, “Manufacturing of Functionally Graded Porous Products by Selective Laser Sintering,” 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40726.