Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Panel-method-based path planning for eVTOL in urban environment
Date
2021-01-01
Author
Ünal, Zeynep
Yavrucuk, İlkay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
100
views
0
downloads
Cite This
All rights reserved.In this study the panel method used in fluid dynamics, is applied to the path planning problem of electric vertical take-off and landing (eVTOL) vehicles in urban environment. For an urban air mobility scenario the path planning problem of these vehicles includes the simultaneous operation of large number of vehicles around complex shaped buildings and architectural structures. Using the panel method, flow around complex shaped obstacles is modeled and calculated stream-lines of the fluid flow are used as trajectories for the eVTOL traffic. Since, streamlines do not cross each other or obstacles, using streamlines as vehicle trajectories guarantees collision free paths for vehicles. Moreover, source and sink elements are used to avoid collision of vehicles with each other in case of emergency, and attract the vehicles to target points. The application of panel method provides a solution to the whole path planning problem for multiple vehicles in a single step. Assuming complete knowledge of the city map, the path of each eVTOL vehicle in an air taxi fleet can be determined simultaneously.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108980577&origin=inward
https://hdl.handle.net/11511/91398
Conference Name
77th Annual Vertical Flight Society Forum and Technology Display: The Future of Vertical Flight, FORUM 2021
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Genetic Algorithm based aerodynamic shape optimization tool for wind turbine blades and its implementation to helicopter blades
Polat, Özge; Sezer-uzol, Nilay; Tuncer, İsmail Hakkı (2014-01-01)
This study presents a methodology first built up for the aerodynamic shape optimization for wind turbine rotors and its modified version for a helicopter rotor in hover. The Genetic Algorithm (GA) coupled with an in-house Blade Element Momentum (BEM) tool is used in the design optimization process. The wind turbine blade optimization studies are performed for maximizing the power production at a given wind speed, rotor speed and rotor diameter, while for the helicopter blade optimization in hover, figure of...
Computational Analysis of a Model Scale Helicopter Rotor in Ground Effect
Şahbaz, Mehmet; Sezer Uzol, Nilay; Kurtuluş, Dilek Funda (2017-09-22)
In this study, a numerical investigation of ground effect of a helicopter rotor is investigated with Computational Fluid Dynamics method. For this purpose, a model scale 2 bladed helicopter rotor is chosen. An experimental study is referred for comparison and validity of CFD method.
Experimental investigation of the effects of tip-injection on the aerodynamic loads and wake characteristics of a model horizontal axis wind turbine rotor
Abdulrahim, Anas; Uzol, Oğuz; Department of Aerospace Engineering (2014)
In this study, tip injection is implemented on a model Horizontal Axis Wind Turbine (HAWT) rotor to investigate the power and thrust coefficient variations as well as the wake characteristics. The model wind turbine has a 0.95 m diameter 3-bladed rotor with non-linearly twisted and tapered blades that has NREL S826 profile. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the tips while the rotor is rotating. The experiments are perform...
Route planning for unmanned air vehicles
Tulum, Kamil; İder, S. Kemal; Department of Mechanical Engineering (2009)
In this thesis, automatic routing technologies for unmanned air vehicles are investigated. A route planner that minimizes the fuel consumption and maximizes the survivability is developed. While planning the route, using more than one objective entails the auto-routing problem to multi-objective optimization considerations. In this work, these considerations are handled with search algorithms. In order to assess the route options, a fuel consumption model and a survivability model are utilized for the route...
Control system design and implementation of a tilt rotor UAV
Cevher, Levent; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
In this thesis, a hybrid vertical take off and landing unmanned air vehicle platform is designed and developed. The platform uses tricopter configuration for takeoff and landing while it uses its fixed wings for forward flight. Control algorithms are developed for the VTOL aircraft. For this purpose, first nonlinear simulation code is developed in Matlab/Simulink environment. The simulation uses the wind tunnel experimental data for the propellers and aerodynamic data obtained from a package program XFLR 5 ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Ünal and İ. Yavrucuk, “Panel-method-based path planning for eVTOL in urban environment,” presented at the 77th Annual Vertical Flight Society Forum and Technology Display: The Future of Vertical Flight, FORUM 2021, Virtual, Online, 2021, Accessed: 00, 2021. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85108980577&origin=inward.