A Karhunen-Loeve analysis of turbulent thermal convection

1996-01-01
The Karhunen-Loeve (K-L) procedure is applied to a turbulent thermal convection database which is generated numerically through integration of the Boussinesq equation in a periodic box with stress-free boundary conditions using a Fourier collocation spectral method. This procedure generates a complete set of mutually orthogonal functions in terms of which the turbulent flow fluctuation field is represented optimally in the mean square sense. A study is performed ranging from the direct projection of the database onto the set, resulting in a considerable data compression, to developing a system of dynamical equations employing the set as a basis for approximating the Boussinesq equation. In the latter a new strategy is proposed and tested for the treatment of the mean component of the turbulent flow. Finally, the direct projection and the dynamical equations are used to study the effects of truncation on the representation of the turbulent flow.
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Suggestions

A Karhunen-Loeve-based approach to numerical simulation of transition in Rayleigh-Benard convection
Tarman, HI (2003-06-01)
A Karhunen-Loeve ( K - L) basis is generated empirically, using a database obtained by numerical integration of Boussinesq equations representing Rayleigh - Benard convection in a weakly turbulent state in a periodic convective box with free upper and lower surfaces. This basis is then used to reduce the governing partial differential equation (PDE) into a truncated system of amplitude equations under Galerkin projection. In the generation and implementation of the basis, the symmetries of the PDE and the g...
A van der Waals density functional investigation of carboranethiol self-assembled monolayers on Au(111)
Yılmaz, Ayşen; Danışman, Mehmet Fatih (2016-05-14)
Isolated and full monolayer adsorption of various carboranethiol (C2B10H12S) isomers on the gold(111) surface has been investigated using both the standard and van der Waals density functional theory calculations. The effect of different molecular dipole moment orientations on the low energy adlayer geometries, the binding characteristics and the electronic properties of the self-assembled monolayers of these isomers has been studied. Specifically, the binding energy and work function changes associated wit...
A simplified model for the analysis of machine foundations on a nonsaturated, elastic and linear soil layer
Aşık, Mehmet Zülfü (Elsevier BV, 2001-12)
A simplified semi-analytical method, which considers advantages of analytical and numerical approaches, is developed to compute the response of a rigid strip and circular machine foundations - subjected to a harmonic excitation - resting on a layer of soil deposit with a noncompliant rock or rock-like material at the base. The method is based on variational principles and minimization of energy using Hamilton's principle. Nondimensional equations are developed for both type of footing resting on a soil laye...
A finite element variational multiscale method for the Navier-Stokes equations
Volker, John; Kaya Merdan, Songül (Society for Industrial & Applied Mathematics (SIAM), 2005-01-01)
This paper presents a variational multiscale method (VMS) for the incompressible Navier-Stokes equations which is defined by a large scale space L-H for the velocity deformation tensor and a turbulent viscosity nu(T). The connection of this method to the standard formulation of a VMS is explained. The conditions on L-H under which the VMS can be implemented easily and efficiently into an existing finite element code for solving the Navier - Stokes equations are studied. Numerical tests with the Smagorinsky ...
A Numerical Simulation of non-uniform Magnetic Field Effect on Ferrofluid Flow in a Half-Annulus Enclosure with Sinusoidal Hot Wall
Oglakkaya, F. S.; Bozkaya, Canan (2016-09-25)
In this study, the problem of two-dimensional, laminar ferrofluid flow in a semi-annulus enclosure with sinusoidal hot wall is investigated numerically by using the dual reciprocity boundary element method. The flow is under the influence of a nodal magnetic source placed below the mid of the sinusoidal inner wall. The equations governing the present problem are obtained under the principles of ferrohydrodynamics and magnetohydrodynamics. The numerical computations are performed for various values of Raylei...
Citation Formats
I. H. Tarman, “A Karhunen-Loeve analysis of turbulent thermal convection,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, vol. 22, no. 1, pp. 67–79, 1996, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92429.