Droplet evaporation on functional surfaces

2018-01-01
Günay, Ahmet Alperen
Gnadt, Marisa
Sett, Soumyadip
Oh, Junho
Miljkovic, Nenad
© 2018 International Heat Transfer Conference. All rights reserved.Droplet evaporation is an important phenomenon governing many man-made and natural processes. Characterizing the rate of evaporation with high accuracy has attracted the attention of numerous scientists over the past century. Traditionally, researchers have studied evaporation by observing the change in the droplet size in a fixed time interval. However, the transient nature coupled with the significant mass-transfer governed gas-dynamics occurring at the droplet three-phase contact line make the classical method crude. Furthermore, the intricate balance played by the internal and external flows, evaporation kinetics, thermocapillarity, binary-mixture dynamics, curvature, and moving contact lines make the decoupling of these processes impossible with classical transient methods. Here, we use our recently developed spatially-steady method to characterize the rate of evaporation of sessile droplets on functional surfaces. By utilizing a piezoelectric dispenser to feed microscale droplets ( ≈ 9 µm) to a larger evaporating droplet at a prescribed frequency, we can both create variable-sized droplets on any surface, and study their evaporation rate by modulating the piezoelectric droplet addition frequency. Using the spatially-steady technique, we studied water evaporation of droplets having base radii ranging from 30 µm to 270 µm on surfaces of different functionalities (45 ≤ a,app ≤ 162, where a,app is the apparent advancing contact angle) under different substrate temperature conditions (30℃ ≤ s ≤ 60℃, where s is the functional surface temperature). Our work shows that the rate of evaporation increases linearly for increasing droplet size, and the surface functionality halts its important role at elevated temperatures.
16th International Heat Transfer Conference, IHTC 2018

Suggestions

Fabrication of nanostructured samples for the investigation of near field radiation transfer
Artvin, Zafer; Okutucu Özyurt, Hanife Tuba; Mengüç, M. Pınar; Department of Micro and Nanotechnology (2012)
Radiative heat transfer in nanostructures with sub-wavelength dimensions can exceed that predicted by Planck's blackbody distribution. This increased effect is due to the tunneling of infrared radiation between nanogaps, and can allow the eventual development of nano-thermo-photo-voltaic (Nano-TPV) cells for energy generation from low temperature heat sources. Although near field radiation effects have been discussed for many years, experimental verification of these effects is very limited so far. In this ...
Modeling and simulations of a micro solar power system
Pehlivanturk, Can; Ozkan, Onur; Baker, Derek Keıth (Wiley, 2014-07-01)
In this paper, the mathematical modeling and simulations of a concentrating solar power system located at the Middle East Technical University Northern Cyprus Campus are presented. The system consists of parabolic trough collectors (PTCs), a propane boiler, an organic Rankine cycle (ORC), and a wet cooling tower. Presently, the PTC field is severely undersized with respect to the ORC making the system impossible to operate without burning significant propane. Expanding the solar field could result in better...
Detailed simulations of parabolic trough collector for investigating enhancement of heat transfer to absorber tube flow
Uygur, Sinan; Tarı, İlker; Department of Mechanical Engineering (2021-2-12)
In this thesis, a detailed method to simulate heat transfer and fluid flow of parabolic trough solar collectors is presented. An optical model of the considered collector is created with Tonatiuh ray tracing program. The data of ray tracing analysis is exported to MATLAB as a binary file for post-processing. Curve fitting and surface fitting to the data are performed to obtain the heat flux distribution on the absorber tube’s outer surface. User-defined functions (UDFs) for ANSYS Fluent Computational Fluid ...
Experimental investigation of single phase liquid flow and heat transfer in multiport minichannels
Altınöz, Mesru; Güvenç Yazıcıoğlu, Almıla; Baker, Derek Keıth; Department of Mechanical Engineering (2013)
This thesis aims to experimentally investigate pressure drop and heat transfer characteristics of single phase water flow in rectangular minichannels. The small channels are an area of interest in heat transfer field since 1970’s owing to their enhanced heat transfer characteristics. However, the heat transfer and pressure drop characteristics of these channels are not fully established as there is a wide number of studies in literature showing inconsistent results with each other. In order to investigate t...
Energy and exergy analyses of high school heating system
Dilek, Murat; Baker, Derek Keıth; Department of Mechanical Engineering (2007)
This thesis presents energy, exergy and economic analyses of the heating system of an existing building, the Konya Central Informatics Technical High School. The heat requirement for each room of the building is found by calculating heat losses. Radiator lengths that can provide the heat requirements are selected. For the exergy analysis, the system is divided into three parts: Heat generator, radiators and rooms. Comparisons are made according to minimum outdoor temperature, insulation quality of the struc...
Citation Formats
A. A. Günay, M. Gnadt, S. Sett, J. Oh, and N. Miljkovic, “Droplet evaporation on functional surfaces,” Beijing, Çin, 2018, vol. 2018-August, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/92880.