Transient Modeling Techniques for the Analysis of Electromagnetic Launchers

Tosun, Nail
Although electromagnetic launchers (EMLs) are better than gun-powder-based launchers, they have to endure severe electrical and mechanical conditions. Therefore, the optimal design and accurate simulations of these devices are essential. The inductance and electromotive force (EMF) variations in the transient, which significantly impact the launch process, are modeled. Moreover, velocity skin effect (VSE) is added to the EML calculations in an effective way. Commercial finite element software cannot solve the electromagnetic aspects of such a high-speed application with a transient solver in 3-D. Although 2-D approximations can be used, such an approximation overestimates VSE resistance due to geometry simplifications. In this thesis, a novel quasi-transient 3-D Finite Element Method (FEM) model where the air-armature region's conductivity is varied to emulate the high-speed motion of the armature is proposed. These propositions are compared for experimental results with different EMLs, EMFY-1, and EMFY-2 and showed good agreement.


Electromagnetic simulation and optimization of an electromagnetic launcher
Ceylan, Doğa; Keysan, Ozan; Department of Electrical and Electronics Engineering (2018)
Electromagnetic launcher (EML) is an electromagnetic accelerator which uses electrical pulse power instead of conventional gunpowder. A large amount of electric current in the pulse waveform flows in the rails and armature. This current creates large magnetic field between rails. As a result of Lorentz force, armature and projectile accelerate. In this study, finite element (FE) model of an EML which includes both pulsed power supply (PPS) circuits with 2~MJ total electrical energy and barrel with 3~m lengt...
A Hybrid Simulation Model for Electromagnetic Launchers including the Transient Inductance and Electromotive Force
Tosun, Nail; Polat, Hakan; Ceylan, Doga; Karagoz, Mustafa; Yildirim, Baran; Gungen, Ibrahim; Keysan, Ozan (Institute of Electrical and Electronics Engineers (IEEE), 2020-09-01)
Although electromagnetic launchers (EMLs) are superior to classical gun-powder-based launchers, they have to withstand extreme electrical and mechanical conditions. Therefore, the optimal design and precise simulations of these devices are crucial. In this article, a new simulation strategy for EMLs is proposed in order to achieve high accuracy and reduced complexity. The inductance and electromotive force (EMF) variations in the transient, which have a considerable influence on the launch process, are mode...
Utilization and Optimization of Superconducting Coil Parameters in Electromagnetic Launcher Systems
Polat, Hakan; Ceylan, Doga; Keysan, Ozan (2019-06-01)
The utilization of external field windings in electromagnetic launchers provides an additional electromagnetic field between the rails of an electromagnetic launcher which increases the Lorentz force acting on the armature in the acceleration direction. However, additional magnetic field created by the conventional copper windings are very limited due to their low maximum current carrying capability. Therefore, using high temperature superconductors (HTS) with a current carrying capability up to 100 A/mm 2 ...
Yerlikaya, Umit; Balkan, Raif Tuna (2017-10-13)
Electromechanical actuators are widely used in miscellaneous applications in engineering such as aircrafts, missiles, etc. due to their momentary overdrive capability, long-term storability, and low quiescent power/low maintenance characteristics. This work focuses on electromechanical control actuation systems (CAS) that are composed of a brushless direct current motor, ball screw, and lever mechanism. In this type of CAS, nonlinearity and asymmetry occur due to the lever mechanism itself, saturation limit...
Development and characterization of tungstates and molybdates for li-ion batteries
Kaygusuz, Burçin; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2016)
In recent years, the need for portable power, lithium ion batteries dominate the markets because of their advantages. Metal tungstates and molybdates (Metals: Fe, Ni, Co, Mn, Zn, Mg) are two important families of inorganic materials and have found many applications in various fields, such as catalysis, magnetic applications, humidity sensors, and photoluminescence. However, their use in energy storage applications is almost none. The tungstates and molybdates adapt monoclinic crystal structure and crystalli...
Citation Formats
N. Tosun, “Transient Modeling Techniques for the Analysis of Electromagnetic Launchers,” M.S. - Master of Science, Middle East Technical University, 2021.