Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
DYNAMIC MODELING AND CONTROL OF AN ELECTROMECHANICAL CONTROL ACTUATION SYSTEM
Date
2017-10-13
Author
Yerlikaya, Umit
Balkan, Raif Tuna
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
322
views
0
downloads
Cite This
Electromechanical actuators are widely used in miscellaneous applications in engineering such as aircrafts, missiles, etc. due to their momentary overdrive capability, long-term storability, and low quiescent power/low maintenance characteristics. This work focuses on electromechanical control actuation systems (CAS) that are composed of a brushless direct current motor, ball screw, and lever mechanism. In this type of CAS, nonlinearity and asymmetry occur due to the lever mechanism itself, saturation limits, Coulomb friction, backlash, and initial mounting position of lever mechanism. In this study, both nonlinear and linear mathematical models are obtained using governing equations of motion. By using the linear model, it is shown that employing a PI-controller for position and a P-controller for velocity will be sufficient to satisfy performance requirements in the inner-loop control of an electromechanical CAS. The unknown controller parameters and anti-windup coefficient are obtained by the Optimization Tools of MATLAB using nonlinear model. Results obtained from the nonlinear model and real-time unloaded and loaded tests on a prototype developed are compared to verify the nonlinear model.
Subject Keywords
Aerofin control-system
URI
https://hdl.handle.net/11511/53057
Conference Name
10th ASME Annual Dynamic Systems and Control Conference
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Dynamic modeling and control of an electromechanical control actuation system
Yerlikaya, Ümit; Balkan, Raif Tuna; Department of Mechanical Engineering (2016)
Electromechanical simulators, actuators are widely used in miscellaneous applications in engineering such as aircrafts, missiles, etc. These actuators have momentary overdrive capability, long-term storability and low quiescent power/low maintenance characteristics. Thus, electromechanical actuators are applicable option for any system in aerospace industry, instead of using hydraulic actuators. In the same way, they can be used in control actuation section of missiles to deflect flight control surfaces. Mo...
Active Control of Smart Fin Model for Aircraft Buffeting Load Alleviation Applications
Chen, Yong; Ulker, Fatma Demet; Nalbantoglu, Volkan; Wickramasinghe, Viresh; Zimcik, David; Yaman, Yavuz (2009-11-01)
Following the program to lest a hybrid actuation system for high-agility aircraft buffeting load alleviation oil the full-scale F/A-18 vertical fin structure, an investigation has been performed to understand the aerodynamic effects of high-speed vortical flows on the dynamic characteristics of vertical fin structures. Extensive wind-tunnel tests have been conducted on a scaled model fill integrated with piezoelectric actuators and accelerometers to measure file aft-tip vibration responses under various fre...
Detailed modeling and control of a 2-DOF gimbal system
Poyrazoğlu, Erhan; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2017)
Gimbal systems are used in various engineering applications such as military systems. Their configurations are designed according to the types of application and desired performance requirements. The essential aim of these systems is to compensate the disturbance effects in order to stabilize LOS and positioning to the desired point. In this thesis, first, a detailed mathematical model of a 2-DOF gimbal system containing some nonlinear dynamic effects such as friction, static and dynamic mass unbalance is obt...
Design and evaluation of a helicopter main rotor electrohydraulic control system
Düzağaç, Hasan Ali; Çalışkan, Hakan; Balkan, Raif Tuna; Department of Mechanical Engineering (2022-8-26)
Helicopters are widely used aircrafts for several purposes. Main Rotor of a Helicopter creates necessary flight forces for performing flight operation. Orientation of a Helicopter Rotor System is determined and controlled manually by pilot and automatically by automatic control system via hydraulically operated flight control actuators. In this research, a novel electrohydraulically operated helicopter main rotor control system is mathematically designed and developed to improve overall performance of contr...
Improving operational performance of antennas on complex platforms by arranging their placements
Bayseferoğulları, Can; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2010)
The aim of this thesis is to improve the operational performance of the communication antennas mounted on complex platforms such as aircrafts and warships by arranging placements of these antennas. Towards this aim, primarily, in order to gain insight on the influence of geometrically simple structures composing the platform on antenna performance, a quarter wavelength monopole antenna placed at the center of a finite square ground plane is studied by using uniform Geometrical Theory of Diffraction (GTD). B...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Yerlikaya and R. T. Balkan, “DYNAMIC MODELING AND CONTROL OF AN ELECTROMECHANICAL CONTROL ACTUATION SYSTEM,” presented at the 10th ASME Annual Dynamic Systems and Control Conference, Tysons, VA, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53057.