Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simulation of seismic triggering and failure time perturbations associated with the 30 October 2020 Samos earthquake (Mw 7.0)
Download
yer-30-5-7-2104-6.pdf
Date
2021-01-01
Author
Sopaci, Eyup
Özacar, Atilla Arda
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
178
views
69
downloads
Cite This
The 30 October 2020 Samos earthquake (Mw = 7.0) ruptured a north-dipping offshore normal fault north of the Samos Island with an extensional mechanism. Aftershocks mainly occurred at the western and eastern ends of the rupture plane in agreement with the Coulomb static stress changes. Mechanism of aftershocks located west of the rupture supported activation of the neighboring strike-slip fault almost instantly. In addition, a seismic cluster including events with Mw similar to 4 has emerged two days later at the SE side of Samos Island. This off-plane cluster displays a clear example of delayed seismic triggering at nearby active faults. In this study, numerical simulations are conducted to mimic the instant and delayed seismic triggering observed after this event and evaluate resultant seismic cycle perturbations at adjacent faults and near Izmir, where amplified ground motions caused heavy damage. For this purpose, Coulomb static stress changes and seismic waveforms recorded by strong-motion stations are combined as static and dynamic triggers on a rate-and-state friction dependent quasi-dynamic spring slider model with shear-normal stress coupling. According to our results, earthquakes with Mw = 4 events noticeably advance in failure time. However, instant triggering occurs only when static stress loading is very high, and the fault is close to fail, explaining the delayed triggering observed SE of Samos Island. Simulations also revealed that the shear-normal stress coupling increases static loading but does not affect the dynamically controlled failure time advances observed at the end of the seismic cycle. After the earthquake, some of the faults adjacent to the rupture are more likely to fail, especially the long strike-slip fault segment capable of generating large earthquakes at the western edge. On the other hand, the Samos earthquake induced no significant dynamic triggering on far away faults near Izmir.
URI
https://hdl.handle.net/11511/93394
Journal
TURKISH JOURNAL OF EARTH SCIENCES
DOI
https://doi.org/10.3906/yer-2104-6
Collections
Department of Geological Engineering, Article
Suggestions
OpenMETU
Core
Characteristics of the 2020 Samos earthquake (Aegean Sea) using seismic data
Kiratzi, Anastasia; Papazachos, Costas; Özacar, Atilla Arda; PINAR, ALİ; Kkallas, Charis; Sopaci, Eyup (2021-01-01)
The 30 October 2020 Samos earthquake (Mw 7.0) ruptured an east–west striking, north dipping normal fault located offshore the northern coast of Samos Island, previously inferred from the bathymetry and regional tectonics. This fault, reported in the fault-databases as the North Samos and/or Kaystrios Fault, ruptured with almost pure dip-slip motion, in a region where both active extension and strike-slip deformation coexist. Historical information for the area confirms that similar ~ Mw7 events had also occ...
Real-time experimental forecast of the Peruvian tsunami of August 2007 for US coastlines
Wei, Yong; Bernard, Eddie N.; Tang, Liujuan; Weiss, Robert; Titov, Vasily V.; Moore, Christopher; Spillane, Michael; Hopkins, Mike; Kanoğlu, Utku (American Geophysical Union (AGU), 2008-02-27)
At 23: 41 UTC on 15 August 2007, an offshore earthquake of magnitude 8.0 severely damaged central Peru and generated a tsunami. Severe shaking by the earthquake collapsed buildings throughout the region and caused 514 fatalities. The tsunami resulted in three casualties and a representative maximum runup height of similar to 7 m in the near field. The first real-time tsunami data available came from a deep-ocean tsunami detection buoy within 1 hour of tsunami generation. These tsunami data were used to prod...
Predictive performance of current ground motion models for recorded strong motions in 2020 Samos Earthquake
Akbaş, Burak; Gülerce, Zeynep; Sopacı, Eyüp; Özacar, Atilla Arda; Önder, Fatih M.; UZEL, BORA; Can, Gizem; Çakır, Elife; Ilgaç, Makbule; Saltoğlu, Nazlı; Söylemez, Berkan; Askan, Aysegul; Cetin, Kemal Onder; Unutmaz, Berna (2022-01-01)
The 2020 M7.0 Samos earthquake had occurred on the north of Samos Island; however, structural damage was observed in İzmir-Bayraklı, which is located approximately 65 km away from the epicenter. Strong ground motions recorded in İzmir Bay showed unique site amplifications, mostly due to the interaction between the basin and deep alluvial deposit response. The objective of this study is to evaluate the predictive performance of current ground motion models (GMMs) for estimating the recorded strong motions, e...
Reconnaissance of 2020 M 7.0 Samos Island (Aegean Sea) earthquake
Çetin, Kemal Önder; Sextos, Anastasios; Stewart, Jonathan P. (2021-08-01)
The Samos Island (Aegean Sea) Earthquake occurred on 30 October 2020. It produced a tsunami that impacted coastal communities, ground shaking that was locally amplified in some areas and that led to collapse of structures with 118 fatalities in both Greece and Turkey, and wide-ranging geotechnical effects including rockfalls, landsliding, and liquefaction. As a result of the global COVID-19 pandemic, the reconnaissance of this event did not involve the deployment of international teams, as would be typical ...
Geotechnical reconnaissance findings of the October 30 2020, Mw7.0 Samos Island (Aegean Sea) earthquake
Ziotopoulou, Katerina; et. al. (2022-11-01)
On October 30, 2020 14:51 (UTC), a moment magnitude (Mw) of 7.0 (USGS, EMSC) earthquake occurred in the Aegean Sea north of the island of Samos, Greece. Turkish and Hellenic geotechnical reconnaissance teams were deployed immediately after the event and their findings are documented herein. The predominantly observed failure mechanism was that of earthquake-induced liquefaction and its associated impacts. Such failures are presented and discussed together with a preliminary assessment of the performance of ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Sopaci and A. A. Özacar, “Simulation of seismic triggering and failure time perturbations associated with the 30 October 2020 Samos earthquake (Mw 7.0),”
TURKISH JOURNAL OF EARTH SCIENCES
, vol. 30, no. 5, pp. 653–664, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93394.