Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multifunctional and Physically Transient Supercapacitors, Triboelectric Nanogenerators, and Capacitive Sensors
Date
2021-10-01
Author
Durukan, Mete Batuhan
Çiçek, Melih Ögeday
Doğanay, Doğa
Çınar, Simge
Ünalan, Hüsnü Emrah
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
155
views
0
downloads
Cite This
Electronic waste (e-waste) grows in parallel with the increasing need for consumer electronics. This, unfortunately, is leading to pollution and massive ecological problems worldwide. A solution to this problem is the use of transient electronics. While transiency of a few components such as transistors and batteries have been proposed already, it is crucial to have all components in electronic devices to be transient. Therefore, the transiency of more electronic components should be demonstrated to alleviate the e-waste problem. Herein, multifunctional nanocomposite electrodes are fabricated using poly(vinyl alcohol), carbon black, and activated carbon. These simple electrodes are then used to fabricate physically transient supercapacitors, triboelectric nanogenerators, and capacitive sensors. Transient supercapacitors are used numerous times with excellent supercapacitive behavior before being discarded, which show promise as an energy storage component for transient systems. The fabricated transient triboelectric nanogenerators are used to harvest mechanical energy, eliminated the need for an external power supply, paving the way to self-powered devices, such as a touchpad as demonstrated herein. The fabricated transient capacitive sensors, on the other hand, have shown long linear sensitivities and offered waste-free monitoring of physiological signals and body motions.
URI
https://hdl.handle.net/11511/93674
Journal
ADVANCED FUNCTIONAL MATERIALS
DOI
https://doi.org/10.1002/adfm.202106066
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Investigation of flow and heat transfer behavior of integrated pin fin-aluminum foam heat sink
ŞAHİN, Yiğit Serkan; TOPRAK, Beytullah İsmet; SOLMAZ, İsmail; Bayer, Özgür (2023-01-01)
With the rapid development in the electronics industry, the thermal management of high power density elec-tronic products (HPDEPs) has become very important and requires innovative heat removal technologies. In this study, an integrated heat sink (IHS) fabricated by combining aluminum foam and pin-finned heat sink config-urations that are frequently used in the cooling of electronic products has been proposed as an effective solution for the thermal management of HPDEPs. The heat removal and pressure drop c...
Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
Aurang, Pantea; Es, Fırat; Turan, Raşit; Ünalan, Hüsnü Emrah (null; 2015-11-29)
Reducing silicon (Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to inc...
Nanowire decorated, ultra-thin, single crystalline silicon for photovoltaic devices
AURANG, Pantea; Turan, Raşit; Ünalan, Hüsnü Emrah (IOP Publishing, 2017-10-06)
Reducing silicon ( Si) wafer thickness in the photovoltaic industry has always been demanded for lowering the overall cost. Further benefits such as short collection lengths and improved open circuit voltages can also be achieved by Si thickness reduction. However, the problem with thin films is poor light absorption. One way to decrease optical losses in photovoltaic devices is to minimize the front side reflection. This approach can be applied to front contacted ultra-thin crystalline Si solar cells to in...
Experimental investigation of micro grooved heat pipes on silicon and aluminum
Alijani, Hossein; Çetin, Barbaros; Dursunkaya, Zafer (null; 2016-09-14)
As the electronic components get more and more miniaturized, their thermal management becomes more and more challenging. High heat flux and requiring no moving parts are of benefits that has brought micro-grooved heat pipes as an effective heat removal method, to researchers’ attention in recent years. In current study, thermal performance of an array of 50 micro-grooved heat pipes fabricated on aluminum and filled with DI water is experimentally investigated; temperature distribution along the heat pipes i...
Multilayer graphene growth on polar dielectric substrates using chemical vapour deposition
KARAMAT, SHUMAİLA; Celik, K.; Zaman, S. Shah; Oral, Ahmet (Elsevier BV, 2018-06-01)
High quality of graphene is necessary for its applications at industrial scale production. The most convenient way is its direct growth on dielectrics which avoid the transfer route of graphene from metal to dielectric substrate usually followed by graphene community. The choice of a suitable dielectric for the gate material which can replace silicon dioxide (SiO2) is in high demand. Various properties like permittivity, thermodynamic stability, film morphology, interface quality, bandgap and band alignment...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. B. Durukan, M. Ö. Çiçek, D. Doğanay, S. Çınar, and H. E. Ünalan, “Multifunctional and Physically Transient Supercapacitors, Triboelectric Nanogenerators, and Capacitive Sensors,”
ADVANCED FUNCTIONAL MATERIALS
, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/93674.