Experimental investigation of micro grooved heat pipes on silicon and aluminum

Alijani, Hossein
Çetin, Barbaros
Dursunkaya, Zafer
As the electronic components get more and more miniaturized, their thermal management becomes more and more challenging. High heat flux and requiring no moving parts are of benefits that has brought micro-grooved heat pipes as an effective heat removal method, to researchers’ attention in recent years. In current study, thermal performance of an array of 50 micro-grooved heat pipes fabricated on aluminum and filled with DI water is experimentally investigated; temperature distribution along the heat pipes is read and reported under different operating conditions.
5th Micro and Nano Flows Conference, 11-14 September 2016


Comparison of the thermal and pressure drop characteristics of a conventional fin block and partially metal foam embedded heat sinks
Ataer, Süleyman Kaancan; Yamalı, Cemil; Albayrak, Kahraman; Department of Mechanical Engineering (2014)
Despite the downsizing of the electronic components, the increase in the power consumption of the electronic components and correspondingly the rise in the loss of power that transforms into heat have given a momentum in the search for different cooling methods for thermal sinks by the thermal engineers. Excessively heated regions that form on the small areas where the heat generating components contact the heat sinks create a thermal resistance for the heat flow from the surface of the component to the cha...
Development of diffusion bonded materials for electronics cooling applications
Atabay, Sıla Ece; Dericioğlu, Arcan Fehmi; Department of Metallurgical and Materials Engineering (2017)
Failure of most of the electronic systems are originating from deterioration of the components due to excessive heat flux generation. The unstoppable demand for more complex and miniaturized electronic systems makes the development of more suitable and feasible production methods for their cooling systems and components compulsory. In the scope of this study diffusion bonding behavior of the aluminum (Al) 6063 alloy was investigated to make this bonding method and alloy system available for the electronic c...
Implementation of metal-based microchannel heat exchangers in a microrefrigeration cycle, and numerical and experimental investigation of surface roughness effects on flow boiling
Jafari Khousheh Mehr, Rahim; Okutucu Özyurt, Hanife Tuba; Ünver, Hakkı Özgür; Department of Mechanical Engineering (2015)
A microscale vapor compression refrigeration cycle has been constructed for possible application in the thermal management of compact electronic components. The micro-evaporator and micro-condenser components have been fabricated using wire electron discharge machining and micromilling, respectively. Three microevaporators have been manufactured with different surface roughness for the experimental and numerical investigation of roughness effect on nucleate flow boiling in microchannels. In the numerical pa...
Optimization of a heat sink with heterogeneous heat flux boundary condition
Turgut, Eren; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2019)
Advancements in micro/nanotechnology along with the size reduction in avionics, raise the importance of microchannel heat sink utilization in the field of electronics cooling. The usage of conventional uniform pin fin arrays or microchannels in the presence of non-uniform heating conditions are not sufficient to overcome the occurrence of the hotspots. Consequently, significant temperature gradients take place at the surface to be cooled. In this study, the effects of some design parameters on the non-unifo...
Numerical Investigation on Cooling of Small form Factor Computer Cases
ORHAN, OMER EMRE; Tarı, İlker (2008-11-01)
In this study, cooling of small form factor computers is numerically investigated. The problem is a conjugate heat transfer problem in which ambient air is the final heat transfer medium. In modeling the problem, heat transfer using heat pipes running from the CPU to the heat exchanger in the back end of the chassis, forced convection inside the chassis, ventilation of the chassis air, conduction paths inside the chassis, and natural convection from the chassis walls to the ambient air are considered. The n...
Citation Formats
H. Alijani, B. Çetin, and Z. Dursunkaya, “Experimental investigation of micro grooved heat pipes on silicon and aluminum,” Milan, Italy, 2016, p. 1, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/87799.