Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Eliminating the Cut Down from Science for Equality: Policies for Fair HPC Resource Utilization
Date
2021-10-07
Author
Nuhoğlu, Gökçe
Aydınoğlu, Arsev Umur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
240
views
0
downloads
Cite This
Büyük veri araştırmacıları, yüksek hesaplama ihtiyaçları nedeniyle karmaşık altyapılara bağımlıdır. Bu talebi karşılamak için merkezler olarak Yüksek Performanslı Bilgi İşlem (HPC) altyapıları kurulur. Araştırmacıların bu merkezlere eşit erişimi temel sorunlardan biridir. Literatürde HPC kaynaklarının demokratikleşmesine ilişkin bazı örnekler bulunmaktadır. Ancak, HPC kaynaklarının adil bilimsel kullanımına ilişkin sorunlar devam etmektedir. Bu çalışmada, Türkiye'deki üniversitelere bağlı ve HPC merkezlerini kullanan araştırmacıların erişimde eşitlik konusundaki deneyimlerini araştırıyoruz. HPC kullanılarak Türkiye'deki araştırmacılarla yapılan yarı yapılandırılmış görüşmeler yoluyla veri üretiyoruz. Çalışmanın bulguları, Türkiye'deki merkezlerin başvurular için bir liyakat sistemine sahip olmadığını göstermektedir. Her araştırmacı merkezlerden eşit şekilde faydalanabilir ancak araştırmacılar kalabalık nedeniyle uzun kuyruklara katlanmak zorunda kalıyor. Sınırlı bütçeli taşra üniversitelerindeki araştırmacılar, uzun kuyruk süreleri olan merkezi HPC kaynaklarını kullanırken, bütçe imkanları olan araştırmacılar kendi küçük yerel merkezlerini kurma eğilimindedir. Küçük bir zümrenin küçük ölçekli araştırmaları için kullanılan bu yerel bilgi işlem merkezleri, ulusal merkezler gibi büyük ölçekli araştırmalarda bilgi işlem ihtiyaçlarını karşılayamaz. Bu nedenle, kaynaklardan adil bir şekilde yararlanmayı gözeten ortak altyapı politikaları öneriyoruz. Bu çalışma, araştırmacıların ayrımcılığını ortadan kaldırmak için verimli HPC altyapı kullanımı tasarım politikaları sağlar.
URI
https://convention2.allacademic.com/one/ssss/ssss21/index.php?cmd=Online+Program+View+Paper&selected_paper_id=1859026&PHPSESSID=aagt26e0rsd71f8qt4d5lj40o6
https://hdl.handle.net/11511/93877
Conference Name
the Annual Conference of the Society for the Social Studies of Science
Collections
Graduate School of Social Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Enabling Grids for E-sciencE III (EGEE-III)
Şener, Cevat(2010-4-30)
A globally distributed computing Grid now plays an essential role for large-scale, data intensive science in many fields of research. The concept has been proven viable through the Enabling Grids for E-sciencE project (EGEE and EGEE-II, 2004-2008) and its related projects. EGEE-II is consolidating the operations and middleware of this Grid for use by a wide range of scientific communities, such as astrophysics, computational chemistry, earth and life sciences, fusion and particle physics. Strong quality ass...
Comparison of predictive models for forecasting timeseries data
Özen, Serkan; Atalay, Mehmet Volkan; Yazıcı, Adnan (2019-11-20)
© 2019 Association for Computing Machinery.Dramatic increase in data size enabled researchers to study analysis and prediction of big data. Big data can be formed in many ways and one alternative is through the use of sensors. An important aspect of data coming from sensors is that they are time-series data. Although forecasting based on time-series data has been studied widely, it is still possible to advance the state-ofthe- art by constructing new hybrid deep learning models. In this study, Random Forest...
Evaluating the convergence of high-performance computing with big data, artificial intelligence and cloud computing technologies
Dildar Korkmaz, Yeşim; Eren, Pekin Erhan; Kayabay, Kerem; Department of Information Systems (2023-1-24)
The advancements in High-Performance Computing (HPC), Big Data, Artificial Intelligence (AI), and Cloud Computing technologies have led to a convergence of these fields, resulting in the emergence of significant improvements for a wide range of fields. Identifying the state of development of technology convergence and forecasting promising technology convergence is critical for both academia and industry. That's why technology assessment and forecasting for HPC-Big Data-AI-Cloud Computing convergence is nee...
Learning a partially-observable card game hearts using reinforcement learning
Demirdöver, Buğra Kaan; Alpaslan, Ferda Nur; Department of Computer Engineering (2020)
Artificial intelligence and machine learning are widely popular in many sectors. Oneof them is the gaming industry. With many different scenarios, different types, gamesare perfect for machine learning and artificial intelligence. This study aims to developlearning agents to play the game of Hearts. Hearts is one of the most popular cardgames in the world. It is a trick based, imperfect information card game. In additionto having a huge state space, hearts offers many extra challenges due to the nature ofth...
BIG DATA FOR INDUSTRY 4.0: A CONCEPTUAL FRAMEWORK
Gökalp, Mert Onuralp; Kayabay, Kerem; Eren, Pekin Erhan; Koçyiğit, Altan (2016-12-17)
Exponential growth in data volume originating from Internet of Things sources and information services drives the industry to develop new models and distributed tools to handle big data. In order to achieve strategic advantages, effective use of these tools and integrating results to their business processes are critical for enterprises. While there is an abundance of tools available in the market, they are underutilized by organizations due to their complexities. Deployment and usage of big data analysis t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Nuhoğlu and A. U. Aydınoğlu, “Eliminating the Cut Down from Science for Equality: Policies for Fair HPC Resource Utilization,” presented at the the Annual Conference of the Society for the Social Studies of Science, Toronto, Kanada, 2021, Accessed: 00, 2021. [Online]. Available: https://convention2.allacademic.com/one/ssss/ssss21/index.php?cmd=Online+Program+View+Paper&selected_paper_id=1859026&PHPSESSID=aagt26e0rsd71f8qt4d5lj40o6.