Application of bagging in day-ahead electricity price forecasting and factor augmentation

2021-11-01
The electricity price forecasting (EPF) is a challenging task not only because of the uncommon characteristics of electricity but also because of the existence of many potential predictors with changing predictive abilities over time. In such an environment, how to account for all available factors and extract as much information as possible is the key to the production of accurate forecasts. To address this long-standing issue in a way that balances complexity and forecasting accuracy while facilitating the traceability of the predictor selection procedure, we propose the method of Bootstrap Aggregation (bagging). To forecast day-ahead electricity prices in a multivariate context for six major power markets, we construct a large-scale pure price model and apply the bagging approach in comparison with the popular Least Absolute Shrinkage and Selection Operator (LASSO) estimation method. Our forecasting study reveals that bagging provides substantial forecast improvements on daily and hourly scales in almost all markets over the popular LASSO estimation method. The differentiation in the forecast performances of the two approaches appears to arise, inter alia, from their structural differences in the explanatory variables selection process. Moreover, to account for the intraday hourly dependencies of day-ahead electricity prices, all our models are augmented with latent factors, and a substantial improvement is observed only in the forecasts from models covering a relatively limited number of predictors.
Energy Economics

Suggestions

Application of a Hybrid Machine Learning model on short term electricty demand prediction
Assar, Ahmed Khaled Ahmed Farouk; Fahrioğlu, Murat; Sustainable Environment and Energy Systems (2022-2)
Electricity demand forecasting is an important procedure in the electricity market and plays a great role in assuring a sustainable and efficient operation chain. By accurately forecasting the demand, one can see a considerable reduction in production costs as well as saving energy resources. Therefore, optimizing the demand forecasting techniques became an inseparable goal of power economics, leading to the introduction of machine learning to this sector that proved to be superior to other pre-defined alte...
An empirical evidence for generalized shrinkage methods: application of bagging in day-ahead electricity price forecasting and factor augmentation .
Özen, Kadir; Yıldırım Kasap, Dilem; Department of Economics (2020)
Fundamental dynamics behind electricity prices are multi-dimensional and elaborate. A popular approach to forecasting electricity price is to utilize large number of predictors. In this study, using the day-ahead electricity price data from commonly studied markets of five major series and GEFCom2014 data, a variant of shrinkage method, Bootstrap Aggregation (bagging) is proposed to incorporate information from available predictors. Bagging manifests itself as a computationally simpler alternative to common...
A novel methodology for medıum and long-term electricity market modeling
İlseven, Engin; Göl, Murat; Department of Electrical and Electronics Engineering (2020-11-15)
In the electricity market, there is a considerable degree of uncertainty in electricity demand, supply, and price due to the uncertainty in parameters such as economic growth, weather conditions, fuel prices, and timing of new investments, etc. These factors in return affect the predictability of the electricity market. This thesis aims to increase the predictability and observability of the electricity market by means of a suitable and validated electricity market modeling methodology designed for medium a...
Hydro-Optimization-Based Medium-Term Price Forecasting Considering Demand and Supply Uncertainty
İLSEVEN, Engin; Göl, Murat (2018-07-01)
This paper proposes an electricity market model of Turkish electricity market for monthly and yearly electricity price forecasting in medium-term by means of supply and demand dynamics formed via a theoretical approach. The electricity market model created within this scope consists of three main components related to electricity demand, supply, and price segments along with hydro optimization submodel, which takes into account the nonlinear relation between supply and price. Electricity price is determined...
Optimal corrosion prevention in crude oil refineries with surrogate modeling
Yandık, Yücelen Bahadır; Koçyiğit, Altan; Department of Information Systems (2020-9)
Energy demand in the world is increasing day by day, which makes energy markets extremely competitive. Crude oil refineries have to adapt to this competition like other players in the energy field. Corrosion is a common problem in crude oil refineries. Production may need to be stopped for maintenance to fix problems caused by corrosion. These stops cause businesses to miss their production target and lose their competitive advantage. Today, it is known that the salts in crude oil play an important ro...
Citation Formats
K. Özen and D. Yıldırım Kasap, “Application of bagging in day-ahead electricity price forecasting and factor augmentation,” Energy Economics, vol. 103, pp. 0–0, 2021, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/94053.